
PERFORMANCE AND TUNING GUIDE | PUBLIC
SAP Adaptive Server Enterprise 16.0 SP03
Document Version: 1.0 – 2020-03-04

Performance and Tuning Series: Locking and
Concurrency Control

©
 2

02
0

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Introduction to Locking. 7
1.1 How Locking Affects Performance. 7
1.2 Lock and Data Consistency. 7
1.3 Granularity of Locks and Locking Schemes. 8

Allpages Locking. 9
Datapages Locking. .10
Datarows Locking. 11

1.4 Types of Locks in SAP ASE. 11
Page and Row Locks. 12
Partition Locks. .13
Table Locks. 15
Schema Locks. 17
Demand Locks. 18
Row-locked System Tables. 20
Range Locking for Serializable Reads. .20
Latches. 21

1.5 Lock Compatibility and Lock Sufficiency. 22
1.6 How Isolation Levels Affect Locking. 25

Isolation Level 0, Read Uncommitted. 26
Isolation Level 1, Read Committed. 27
Isolation Level 2, Repeatable Read. 27
Isolation Level 3, Serializable Reads. 28
SAP ASE Default Isolation Level. .29

1.7 Lock Types and Duration During Query Processing. .29
Lock Types During Create Index Commands. .32
Locking for Select Queries at Isolation Level 1. 32
Table Scans and Isolation Levels 2 and 3. 33
When Update Locks Are Not Required. 33
Locking During or Processing. 34
Skip Uncommitted inserts During selects. .35
Using Alternative Predicates to Skip Nonqualifying Rows. 36

1.8 Pseudocolumn-level Locking. 37
Select Queries That Do Not Reference the Updated Column. .37
Qualify Old and New Values for Uncommitted Updates. 38

2 Snapshot Isolation Level and Locking. .39

2 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Content

3 Locking Configuration and Tuning. 41
3.1 Locks and Performance. 41

sp_sysmon and sp_object_stats Usage. 41
Reduce Lock Contention. 42
Additional Locking Guidelines. 46
Improved Concurrency for Partition-Level Online Operations. 46

3.2 Lock Configuration and Promotion Thresholds. .47
Lock Promotion. 47
Configuring the SAP ASE Lock Limit. 48
Set Lock Promotion Thresholds. 50

3.3 Choosing the Locking Scheme for a Table. 55
Analyzing Existing Applications. 56
Choosing a Locking Scheme Based on Contention Statistics. 56
Monitoring and Managing Tables After Conversion. 58
Applications Not Likely to Benefit from Data-only Locking. 58

3.4 Optimistic Index Locking. 59
Using Optimistic Index Locking. 60
Cautions and Issues. .60

4 Lock Tools. .61
4.1 Information About Blocked Processes. .61
4.2 View Locks with sp_lock. 62
4.3 View Locks with sp_familylock. 64
4.4 Intrafamily Blocking During Network Buffer Merges. 65
4.5 Monitor Lock Timeouts. 66

5 Deadlocks and Concurrency. 67
5.1 Server-side Versus Application-side Deadlocks. 67

Application Deadlock Example. 67
5.2 Server Task Deadlocks. 68
5.3 Deadlocks and Parallel Queries. 68
5.4 Print Deadlock Information to the Error Log. .70
5.5 Deadlock Avoidance. 71

Lock Acquisition on Objects in the Same Order. 71
Delay Deadlock Checking. 71

5.6 Identify Tables Where Concurrency is a Problem. 72
5.7 Lock Management Reporting. 73

6 Lock Commands. 74
6.1 Specify the Locking Scheme for a Table. .74

Specify a Server-Wide Locking Scheme. 74
Specify a Locking Scheme with Create Table. .75

Performance and Tuning Series: Locking and Concurrency Control
Content P U B L I C 3

Changing a Locking Scheme with alter table. 75
Before and After Changing Locking Schemes. 76
Expense of Switching To or From Allpages Locking. 77
Sort Performance During alter table. .77
Specify a Locking Scheme with select into. 77

6.2 Control Isolation Levels. 78
Set Isolation Levels for a Session. 78
Syntax for Query-level and Table-level Locking Options. 79
holdlock, noholdlock, or shared Usage. 79
at isolation Clause Usage. 80
Making Locks More Restrictive. 81
Making Locks Less Restrictive. .82

6.3 Readpast Locking. 82
6.4 Cursors and Locking. 83

shared Keyword Usage. .84
6.5 lock table. 84
6.6 Lock Timeouts. 85
6.7 Preventing Blocking Row Counts. 85

7 Indexes. 87
7.1 Types of Indexes. 87

Index Pages. 88
Index Size. 89
Using Latch-Free Indexes. 90
Hash-Cache BTree Indexes. 91

7.2 Indexes and Partitions. .98
Local Indexes on Partitioned Tables. 98
Global Indexes on Partitioned Tables. 98
Local versus Global Indexes. 98
Unsupported Partition Index Types. 99

7.3 Creating Partial Indexes. .99
7.4 Clustered Indexes on Allpages-locked Tables. 100

Clustered Indexes and select Operations. 100
Clustered Indexes and insert Operations. 101
Page Splitting on Full Data Pages. 102
Page Splitting on Index Pages. 104
Performance Impacts of Page Splitting. .104
Overflow Pages. 104
Clustered Indexes and delete Operations. 105

7.5 Nonclustered Indexes. 107
Leaf Pages Revisited. .108
Nonclustered Index Structure. 108

4 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Content

Nonclustered Indexes and select Operations. .109
Nonclustered Indexes and insert Operations. 110
Nonclustered Indexes and delete Operations. 111
Clustered Indexes on Data-only-locked Tables. 112

7.6 Index Covering. .112
Covering Matching Index Scans . 113
Covering Nonmatching Index Scans. 114

7.7 Indexes and Caching. 115
Using Separate Caches for Data and Index Pages. 115
Index Trips Through the Cache. 115

8 Indexing for Concurrency Control. 116
8.1 Indexes and Performance. 116
8.2 Detecting Indexing Problems. .117

Symptoms of Poor Indexing. 117
8.3 Fixing Corrupted Indexes. 120

Repairing a Nonclustered Index on sysobjects. 121
8.4 Index Limits and Requirements. .122
8.5 Index Choices. 123

Index Keys and Logical Keys. 124
Guidelines for Clustered Indexes. 124
Clustered Index Selection. 125
Candidates for Nonclustered Indexes. 125
Function-based Indexes Selection. 125
Index Selection. 126
Other Indexing Guidelines. 128
Nonclustered Indexes Selection. 128
Composite Indexes Selection . 129
Key Order and Performance in Composite Indexes. .129
Advantages and Disadvantages of Composite Indexes. 131
online reorg rebuild for Data-only-locked Indexes. 131

8.6 Techniques for Choosing Indexes. .131
Index Choice for a Range Query. 132
Add a Point Query with Different Indexing Requirements. 132

8.7 Index and Statistics Maintenance. 134
Drop Indexes That Hurt Performance. 134
Choose Space Management Properties for Indexes. 134

8.8 Additional Indexing Tips. 134
Create Artificial Columns. 135
Keep Index Entries Short and Avoid Overhead. 135
Drop and Rebuild Indexes. 135
Configure Enough Sort Buffers. 136

Performance and Tuning Series: Locking and Concurrency Control
Content P U B L I C 5

Create the Clustered Index First. .136
Configure Large Buffer Pools. 136

8.9 Asynchronous Log Service. 136
Understanding the User Log Cache (ULC) Architecture. 137
When to Use ALS. 138
ALS Usage. 139

6 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Content

1 Introduction to Locking

Configuring locks in SAP ASE includes understanding locking and data consistency, the granularity of locks,
types of locks, lock compatibility, and how isolation levels affect locking.

1.1 How Locking Affects Performance

SAP Adaptive Server Enterprise (SAP ASE) protects the tables, data pages, or data rows used by active
transactions by locking them.

Locking is a concurrency control mechanism: it ensures the consistency of data within and across
transactions. Locking is necessary in a multiuser environment, since several users may be working with the
same data at the same time.

Locking affects performance when one process holds locks that prevent another process from accessing
needed data. This is called lock contention. The process that is blocked by the lock sleeps until the lock is
released.

A more serious impact on performance arises from deadlocks. A deadlock occurs when two user processes
each have a lock on a page, row, or table and each process wants to acquire a lock on the page, row, or table
held by the other. The transaction with the least accumulated CPU time is killed and all of its work is rolled
back.

Understanding the types of locks in SAP ASE can help to reduce lock contention and avoid or minimize
deadlocks.

1.2 Lock and Data Consistency

Data consistency means that if multiple users repeatedly execute a series of transactions, the results are
correct for each transaction, each time. Simultaneous retrievals and modifications of data do not interfere with
each other: the results of queries are consistent.

In this table example, transactions T1 and T2 are attempting to access data at approximately the same time. T1
is updating values in a column, while T2 needs to report the sum of the values.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 7

Table 1: Consistency Levels in Transactions

T1 Event Sequence T2

begin transaction update account
set balance = balance - 100
where acct_number = 25
update account
set balance = balance + 100
where acct_number = 45 commit transaction

T1 and T2 start. T1 up
dates balance for one
account by subtracting
$100. T2 queries the
sum balance, which is
off by $100 at this point
in time—should it return
results now, or wait until
T1 ends? T1 updates bal
ance of the other ac
count by adding the
$100. T1 ends.

begin transaction select sum(balance)
from account
where acct_number < 50 commit transaction

If T2 runs before T1 starts or after T1 completes, either execution of T2 returns the correct value. But if T2 runs
in the middle of transaction T1 (after the first update), the result for transaction T2 is different by $100. While
such behavior may be acceptable in some situations, most database transactions must return correct,
consistent results.

By default, SAP ASE locks the data used in T1 until the transaction is finished. Only then does it allow T2 to
complete its query. T2 “sleeps,” or pauses in execution, until the lock it needs it is released when T1 is
completed.

The alternative, returning data from uncommitted transactions, is known as a dirty read. If results do not need
to be exact, T2 can read the uncommitted changes from T1 and return results immediately, without waiting for
the lock to be released.

Locking is handled automatically by SAP ASE, with options that can be set at the session and query level by the
user. You should know how and when to use transactions to preserve data consistency while maintaining high
performance and throughput.

1.3 Granularity of Locks and Locking Schemes

The granularity of locks in a database refers to how much of the data is locked at one time.

In theory, a database server can lock as much as an entire database or as little as one column of data. Such
extremes affect the concurrency (number of users that can access the data) and locking overhead (amount of
work to process lock requests) in the server. SAP ASE supports locking at the table, partition, page, and row
level.

By locking at higher levels of granularity, the amount of work required to obtain and manage locks is reduced. If
a query needs to read or update many rows in a table it can acquire:

● A table-level lock
● A lock for each page that contains a required row
● A partition-level lock
● A lock on each row

8 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Less overall work is required when a table-level lock is used, but large-scale locks can degrade performance by
making other users wait until locks are released. Decreasing lock granularity makes more data accessible to
other users. Finer granularity locks can degrade performance, since more work is necessary to maintain and
coordinate the increased number of locks. To achieve optimum performance, a locking scheme must balance
the needs of concurrency and overhead.

SAP ASE provides these locking schemes:

● Allpages locking, which locks data pages and index pages
● Datapages locking, which locks only data pages
● Datarows locking, which locks only data rows

For each locking scheme, SAP ASE can lock an entire table or partition, for queries that acquire many page or
row locks, or can lock only the affected pages or rows.

 Note
The terms “data-only-locking” and “data-only-locked table” refer to both the datapages and datarows
locking schemes, and are typically referred to as “DOL” tables. Allpages-locked tables are known as “APL”
tables.

1.3.1 Allpages Locking
Allpages locking locks data pages and index pages.

When a query updates a value in a row in an allpages-locked table, the data page is locked with an exclusive
lock. Any index pages affected by the update are also locked with exclusive locks. These locks are transactional,
meaning that they are held until the end of the transaction.

Locks Held During Allpages Locking

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 9

In many cases, concurrency problems that result from allpages locking arise from the index page locks, rather
than the locks on the data pages themselves. Data pages have longer rows than indexes, and often have a small
number of rows per page. If index keys are short, an index page can store between 100 and 200 keys. An
exclusive lock on an index page can block other users who need to access any of the rows referenced by the
index page, a far greater number of rows than on a locked data page.

1.3.2 Datapages Locking

In datapages locking, entire data pages are still locked, but index pages are not locked.

When a row needs to be changed on a data page, that page is locked, and the lock is held until the end of the
transaction. The updates to the index pages are performed using latches, which are nontransactional. Latches
are held only as long as required to perform the physical changes to the page and are then released
immediately. Index page entries are implicitly locked by locking the data page. No transactional locks are held
on index pages.

Locks Held During Datapages Locking

Related Information

Latches [page 21]

10 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Choosing a Locking Scheme Based on Contention Statistics [page 56]

1.3.3 Datarows Locking

In datarows locking, row-level locks are acquired on individual rows on data pages. Index rows and pages are
not locked.

When a row is changed on a data page, a nontransactional latch is acquired on the page. The latch is held while
the physical change is made to the data page, then the latch is released. The lock on the data row is held until
the end of the transaction. The index rows are updated, using latches on the index page, but are not locked.
Index entries are implicitly locked by acquiring a lock on the data row.

Locks Held During Datarows Locking

1.4 Types of Locks in SAP ASE

SAP ASE has three levels of locking.

● Page locks or partition locks (for partition-lock enabled tables) or table locks are used for tables that use
allpages locking or datapages locking.

● Row locks, partition locks (for partition-lock enabled tables), or table locks are used for tables that use
datarows locking.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 11

Page or row locks are less restrictive (or smaller) than partition or table locks. A page lock locks all the rows on
a data page or an index page; a table lock locks an entire table; a partition lock locks an entire partition
(applicable only for data partitions). A row lock locks only a single row on a page. SAP ASE uses page or row
locks whenever possible to reduce contention and to improve concurrency.

SAP ASE uses a partition or table lock to provide more efficient locking when an entire partition or table or a
large number of pages or rows is accessed by a statement. Locking strategy is directly tied to the query plan, so
a query plan can be as important for its locking strategies as for its I/O implications. For data-only-locked
tables, an update or delete statement without a useful index performs a table scan and acquires a table lock.
For example, the following statement acquires a table lock if the account table uses the datarows or
datapages locking scheme:

update account set balance = balance * 1.05

An update or delete statement using an index begins by acquiring page or row locks. It acquires a partition or
table lock only when a large number of pages or rows are affected. To avoid the overhead of managing
hundreds of locks on a table or partition, SAP ASE uses a lock promotion threshold setting (configured with
sp_setpglockpromote, sp_setpglockpromote_ptn, sp_setrowlockpromote,
sp_setrowlockpromote_ptn). Once table scan accumulates more page or row locks than allowed by the
lock promotion threshold, SAP ASE tries to issue a partition or table lock, depending on corresponding lock
promotion thresholds. If it succeeds, the page or row locks are no longer necessary and are released.

SAP ASE chooses which type of lock to use after it determines the query plan. The way a query or transaction
is written can affect the type of lock the server chooses. You can force the server to make certain locks more or
less restrictive by specifying options for select queries or by changing the transaction’s isolation level.
Applications can use the lock table command to explicitly request a table lock.

Related Information

Lock Configuration and Promotion Thresholds [page 47]
Control Isolation Levels [page 78]

1.4.1 Page and Row Locks

SAP ASE has many types of page and row locks.

● Shared locks – SAP ASE applies shared locks for read operations. If a shared lock has been applied to a
data page or data row or to an index page, other transactions can also acquire a shared lock, even when the
first transaction is active. However, no transaction can acquire an exclusive lock on the page or row until all
shared locks on the page or row are released. This means that many transactions can simultaneously read
a page or row, but no transaction can change data on the page or row while a shared lock exists.
Transactions that require an exclusive lock wait for, or “block,” for the release of the shared locks before
continuing.
By default, SAP ASE releases shared locks after it finishes scanning the page or row. It does not hold
shared locks until the statement is completed or until the end of the transaction unless requested to do so
by the user.

12 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

● Exclusive locks – SAP ASE applies an exclusive lock for a data modification operation. When a transaction
has an exclusive lock, other transactions cannot acquire a lock of any kind on the page or row until the
exclusive lock is released at the end of its transaction. The other transactions wait or “block” until the
exclusive lock is released.

● Update locks – SAP ASE applies an update lock during the initial phase of an update, delete, or fetch
(for cursors declared for update) operation while the page or row is being read. The update lock allows
shared locks on the page or row, but does not allow other update or exclusive locks. Update locks help
avoid deadlocks and lock contention. If the page or row needs to be changed, the update lock is promoted
to an exclusive lock as soon as no other shared locks exist on the page or row.

In general, read operations acquire shared locks, and write operations acquire exclusive locks. For operations
that delete or update data, SAP ASE applies page-level or row-level exclusive and update locks only if the
column used in the search argument is part of an index. If no index exists on any of the search arguments, SAP
ASE must acquire a table-level lock.

This example table shows what kind of page or row locks SAP ASE uses for basic SQL statements. For these
examples, there is an index acct_number, but no index on balance.

Statement Allpages-Locked Table Datarows-Locked Table

select balance from account where acct_number = 25

Shared page lock Shared row lock

insert account values (34, 500)
Exclusive page lock on data page and ex
clusive page lock on leaf-level index page

Exclusive row lock

delete account where acct_number = 25
Update page locks followed by exclusive
page locks on data pages and exclusive
page locks on leaf-level index pages

Update row locks followed by exclu
sive row locks on each affected row

update account set balance = 0 where acct_number = 25

Update page lock on data page and ex
clusive page lock on data page

Update row locks followed by exclu
sive row locks on each affected row

Related Information

Locking for Select Queries at Isolation Level 1 [page 32]

1.4.2 Partition Locks

Partition locks are an attribute of a partitioned table and are applicable to all types of partitioning.

● Intent partition lock – indicates that page-level or row-level locks are held on a partition of table. SAP ASE
applies an intent partition lock with each page or row lock, so an intent lock can be either an exclusive lock

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 13

or a shared lock. Setting an intent partition lock prevents other transactions from acquiring conflicting
partition-level locks on the partition of a table as the partition locks are in effect for the transaction.

● Shared partition lock – similar to a shared page or row lock, except that it affects the entire partition.
● Exclusive partition lock – similar to an exclusive page or row lock, except that it affects the entire partition.
● Covering partition lock – these locks are acquired on unknown partition IDs, so one table partition is locked

in SH_PTN or EX_PTN mode.

This example table shows the respective partition locks of page or row locks SAP ASE uses for basic SQL
statements. For these examples, there is an index on acct_number.

Statement Allpages-Locked Table Datarows-Locked Table

select balance from
account where
acct_number = 25

Intent shared partition lock

Shared page lock

Intent shared partition lock

Shared row lock

insert account values (34, 500)
Intent exclusive partition lock

Exclusive page lock on data page

Exclusive page lock on leaf index pages

Intent exclusive partition lock

Exclusive row lock

delete account where acct_number = 25
Intent exclusive partition lock

Update page locks followed by exclu
sive page locks on data pages and leaf-
level index pages

Intent exclusive partition lock

Update row locks followed by exclusive
row locks on data rows

update account set balance = 0 where acct_number = 25

Intent exclusive partition lock

Update page locks followed by exclu
sive page locks on data pages and leaf-
level index pages

Intent exclusive partition lock

Update row locks followed by exclusive
row locks on data rows.

1.4.2.1 Partition Lock Name

SAP ASE uniquely identifies the partition lock with a combination of database ID (<dbid>), object ID
(<objid>), and partition ID (<ptnid>).

Unknown Partition ID

If the partition ID is unknown, the server acquires locks on the unknown partition ID, which has the value -1.
Locks on the unknown partition ID prevent SH_PTN or EX_PTN lock requests (using a covering partition lock)
in any table partition of the table.

14 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

1.4.2.2 Enabling Partition Locking

Use sp_chgattribute to enable or disable partition-level locking. By default, partition locking is disabled.

Context

Partition-level locking can be enabled only on user tables with more than one data partition. Partition-level
locking can not be enabled for system tables and temporary tables.

The syntax is:

sp_chgattribute <objectname>, 'ptn_locking’, value

Parameters:

<objectname> – is the name of the table on which to change ptn_locking.

value – set to 1 to enable and 0 to disable partition-level locking.

Permissions:

Only the object owner can execute sp_chgattribute.

Example: Examples

This example enables partition-level locking for the authors table:

sp_chgattribute authors, "ptn_locking", 1

This example disables partition-level locking for the authors table:

sp_chgattribute authors, "ptn_locking", 0

1.4.3 Table Locks

SAP ASE has many types of table locks.

● Intent lock – indicates that page-level or row-level locks are held on a table. SAP ASE applies an intent table
lock with each shared or exclusive page or row lock, so an intent lock can be either an exclusive lock or a
shared lock. Setting an intent lock prevents other transactions from acquiring conflicting table-level locks
on the table containing the locked page. An intent lock is held as long as page or row locks are in effect for
the transaction.

● Shared lock – similar to a shared page or row lock, except that it affects the entire table. For example, SAP
ASE applies a shared table lock for a select command with a holdlock clause if the command does not
use an index. A create nonclustered index command also acquires a shared table lock.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 15

● Exclusive lock – similar to an exclusive page or row lock, except that it affects the entire table. For example,
SAP ASE applies an exclusive table lock during a create clustered index command. update and
delete statements on data-only-locked tables require exclusive table locks if their search arguments do
not reference indexed columns of the object.

This example table shows the respective page, row, and table locks of page or row locks SAP ASE uses for basic
SQL statements. For these examples, there is an index on acct_number.

Statement Allpages-Locked Table Datarows-Locked Table

select balance from account
where acct_number = 25

Intent shared table lock Shared page
lock

Intent shared table lock Shared
row lock

insert account values (34, 500)
Intent exclusive table lock Exclusive
page lock on data page Exclusive page
lock on leaf index pages

Intent exclusive table lock Exclu
sive row lock

delete account where acct_number = 25
Intent exclusive table lock Update page
locks followed by exclusive page locks
on data pages and leaf-level index pa
ges

Intent exclusive table lock Update
row locks followed by exclusive
row locks on data rows

update account set balance = 0 where acct_number = 25

Intent exclusive table lock Update page
locks followed by exclusive page locks
on data pages and leaf-level index pa
ges

With an index on acct_number,
intent exclusive table lock Update
row locks followed by exclusive
row locks on data rows. With no
index on a data-only-locked table,
exclusive table lock

Exclusive table locks are also applied to tables during select into operations, including temporary tables
created with tempdb..tablename syntax. Tables created with #tablename are restricted to the sole use of
the process that created them, and are not locked.

1.4.3.1 Commands that Take Intent Locks

Versions of SAP ASE earlier than 15.0.2 used table locks to archive system catalog synchronization. SAP ASE
version 15.0.2 and later uses intent locks for table-level synchronization and row locks for row-level
synchronization.

Earlier releases of SAP ASE locked the entire system catalog while performing operations on the object, so a
single lock request was made. However, SAP ASE version 15.0.2 and later requests locks for all applicable rows
while performing operations on the object if there are multiple rows corresponding to an object in a system
catalog.

This change means that SAP ASE version 15.0.2 and later requests more locks to perform the same operation
than earlier releases, and increases the number of lock resources the system needs. Consequently, you may
need to change the number of locks configuration option after you upgrade SAP ASE.

These commands take intent locks in SAP ASE version 15.0.2 later when they update a system table:

16 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

● create table
● drop table
● create index
● drop index
● create view
● drop view
● create procedure
● drop procedure
● create trigger
● drop trigger
● create default
● drop default
● create rule
● drop rule
● create function
● drop function
● create functional index
● drop functional index
● create computed column
● drop computed column
● select into
● alter table (all versions)
● create schema
● reorg rebuild

If two or more of these commands simultaneously access or update the same system table, their intent locks
do not conflict with each other so they do not block on the system table.

The sp_fixindex and sp_spaceusage system procedures provide information about the row-locked
catalogs.

1.4.4 Schema Locks

Schema locks allow enhanced partition-level operations to update table schema or metadata by achieving
isolation from concurrent operations.

The schema locks are:

● Shared schema lock – indicates that a task is using the current schema of the table for query execution.
Scans and DMLs acquire this lock before starting the execution of the query.

● Exclusive schema lock – indicates that a task is changing the schema of the table. The partition-level
operation acquires this lock to update the schema of the table.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 17

1.4.5 Demand Locks

SAP ASE sets a demand lock to indicate that a transaction is next in the queue to lock a table, page, or row.

Since many readers can hold shared locks on a given page, row, partition, or table, tasks that require exclusive
locks are queued after a task that already holds a shared lock. SAP ASE allows up to three readers’ tasks to
skip ahead of a queued update task.

After a write transaction has been skipped by three tasks or families (in the case of queries running in parallel)
that acquire shared locks, SAP ASE gives a demand lock to the write transaction. Any subsequent requests for
shared locks are queued behind the demand lock.

As soon as the readers queued ahead of the demand lock release their locks, the write transaction acquires its
lock and can proceed. The read transactions queued behind the demand lock wait for the write transaction to
finish and release its exclusive lock.

SAP ASE uses demand locks to avoid lock starvation for write transactions (when the required number of locks
are not available).

1.4.5.1 Demand Locking with Serial Execution

An example of how the demand lock scheme works for serial query execution.

This illustration shows four tasks with shared locks in the active lock position, meaning that all four tasks are
currently reading the page. These tasks can access the same page simultaneously because they hold
compatible locks. Two other tasks are in the queue waiting for locks on the page.

Here is a series of events that could lead to the situation shown:

● Originally, task 2 holds a shared lock on the page.

18 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

● Task 6 makes an exclusive lock request, but must wait until the shared lock is released because shared and
exclusive locks are not compatible.

● Task 3 makes a shared lock request, which is immediately granted because all shared locks are compatible.
● Tasks 1 and 4 make shared lock requests, which are also immediately granted for the same reason.
● Task 6 has now been skipped three times, and is granted a demand lock.
● Task 5 makes a shared lock request. It is queued behind task 6’s exclusive lock request because task 6

holds a demand lock. Task 5 is the fourth task to make a shared page request.
● After tasks 1, 2, 3, and 4 finish their reads and release their shared locks, task 6 is granted its exclusive lock.
● After task 6 finishes its write and releases its exclusive page lock, task 5 is granted its shared page lock.

1.4.5.2 Demand Locking with Parallel Execution

An example of how the demand lock scheme works for parallel query execution.

When queries run in parallel, demand locking treats all shared locks from a family of worker processes as
though they were a single task. The demand lock permits reads from three families (or a total of three serial
tasks and families combined) before granting the exclusive lock.

This illustration shows how the demand lock scheme works when parallel query execution is enabled. The
figure shows six worker processes from three families with shared locks. A task waits for an exclusive lock, and
a worker process from a fourth family waits behind the task.

Here is a series of events that could lead to the situation shown:

● Originally, worker process 1:3 (worker process 3 from a family with family ID 1) holds a shared lock on the
page.

● Task 9 makes an exclusive lock request, but must wait until the shared lock is released.
● Worker process 2:3 requests a shared lock, which is immediately granted because shared locks are

compatible. The skip count for task 9 is now 1.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 19

● Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 1:2 are consecutively granted shared
lock requests. Since family ID 3 and task 10 have no prior locks queued, the skip count for task 9 is now 3,
and task 9 is granted a demand lock.

● Finally, worker process 4:1 makes a shared lock request, but it is queued behind task 9’s exclusive lock
request.

● Any additional shared lock requests from family IDs 1, 2, and 3 and from task 10 are queued ahead of task
9, but all requests from other tasks are queued after it.

● After all the tasks in the active lock position release their shared locks, task 9 is granted its exclusive lock.
● After task 9 releases its exclusive page lock, task 4:1 is granted its shared page lock.

1.4.6 Row-locked System Tables

System tables—except message tables, fake tables (nonrow-oriented tables), and logs—in SAP ASE version
15.0 and later are row-locked.

These tables no longer have a clustered index, but instead have a “placement” index, with a new index ID. Pages
at the data level for SAP ASE are not chained together, and table starting locations are no longer set, but are
randomly generated.

1.4.7 Range Locking for Serializable Reads

Rows that can appear or disappear from a results set are called phantoms. Some queries that require phantom
protection (queries at isolation level 3) use range locks.

Isolation level 3 requires serializable reads within the transaction. A query at isolation level 3 that performs two
read operations with the same query clauses should return the same set of results each time. No other task
can modify:

● One of the result rows so that it no longer qualifies for the serializable read transaction, by updating or
deleting the row

● A row that is not included in the serializable read result set so that the row now qualifies, or insert a row
that would qualify for the result set

SAP ASE uses range locks, infinity key locks, and next-key locks to protect against phantoms on data-only-
locked tables. Allpages-locked tables protect against phantoms by holding locks on the index pages for the
serializable read transaction.

When a query at isolation level 3 (serializable read) performs a range scan using an index, all the keys that
satisfy the query clause are locked for the duration of the transaction. Also, the key that immediately follows
the range is locked, to prevent new values from being added at the end of the range. If there is no next value in
the table, an infinity key lock is used as the next key, to ensure that no rows are added after the last key in the
table.

Range locks can be shared, update, or exclusive locks; depending on the locking scheme, they are either row
locks or page locks. sp_lock output shows “Fam dur, Range” in the context column for range locks. For
infinity key locks, sp_lock shows a lock on a nonexistent row, row 0 of the root index page and “Fam dur, Inf
key” in the context column.

20 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Every transaction that performs an insert or update to a data-only-locked table checks for range locks.

Related Information

How Isolation Levels Affect Locking [page 25]

1.4.8 Latches

Latches are nontransactional synchronization mechanisms used to guarantee the physical consistency of a
page. While rows are being inserted, updated, or deleted, only one SAP ASE process can access the page.
Latches are used for datapages and datarows locking, but not for allpages locking.

The most important distinction between a lock and a latch is duration:

● A lock can persist for a long period of time: while a page is being scanned, while a disk read or network
write takes place, for the duration of a statement, or for the duration of a transaction.

● A latch is held only for the length of time required to insert or move a few bytes on a data page, to copy
pointers, columns, or rows, or to acquire a latch on another index page.

Use the LFB memory size configuration parameter to determine the size of the Latch-Free B-tree (LFB)
bucket pool. By default , the LFB bucket pool uses the delta update for all index pages. However, you can
configure the LFB memory size configuration parameter so that the LFB bucket pool uses only delta updates
for non-leaf pages. See the Reference Manual: Configuration Parameters. For example, if you enable LFB
memory size:

sp_configure 'LFB memory size', 10000

And set this database option for the pubs2 database on the titlesind index:

sp_chgattribute 'titles.titleind', 'optimistic_LFB', 1

The titlesind index uses only delta updates for non-leaf pages

1.4.8.1 Metadata and Latch Management Enhancements

SAP ASE Enterprise version 16.0 and later decreases CPU utilization for latch conflicts in environments that
have very high transaction rates.

Including, decreased contention:

● On internal structures during very high transaction rate cross-database queries and transactions, including
contention on locks, latches, and data caches due to implicit or explicit cross-database references

● During high transaction-rate operations on tables with a large number of partitions
● On internal structures during very high rates of create and drop table, including decreased lock and latch

contention on some system tables

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 21

These features are intended to enhance performance: you should not notice any performance degradation
when SAP ASE uses these enhancements. The metadata and latch management enhancements are enabled
by default, and you need not to perform any configuration to enable these enhancements.

SAP ASE version 16.0 and later decreases CPU utilization during latch conflicts in very high transaction rate
environments.

1.5 Lock Compatibility and Lock Sufficiency

Lock compatibility and lock sufficiency are two basic concepts that support issues of locking and concurrency.

● Lock compatibility – if a task holds a lock on any resource (for example, row, page, partition, or table) can
another task also hold a lock on the same resource?

● Lock sufficiency, for the current task – is the current lock held on any resource (for example, row, page,
partition, or table) sufficient if the task needs to access the resource again?

Lock compatibility affects performance when users must acquire a lock on a row or page, and that row or page
is already locked by another user with an incompatible lock. The task that needs the lock waits, or blocks, until
the incompatible locks are released.

Lock sufficiency works with lock compatibility. If a lock is sufficient, the task does not need to acquire a
different type of lock. For example, if a task updates a row in a transaction, it holds an exclusive lock. If the task
then selects from the row before committing the transaction, the exclusive lock on the row is sufficient; the task
does not need to make an additional lock request. The opposite case is not true: if a task holds a shared lock on
a page or row, and wants to update the row, the task may need to wait to acquire its exclusive lock if other tasks
also hold shared locks on the page.

Can Another Process Immediately Acquire:

If One Process Has:
A Shared Ta
ble Lock?

A Shared
Page or Row
Lock, or an
Update Page
or Row Lock?

An Exclusive Ta
ble Lock?

An Exclusive
Row or Page
Lock?

A Shared
Table In
tent Lock?

An Exclu
sive Table
Intent
Lock?

A shared table lock Yes Yes No No Yes No

A shared page or row
lock, or an update page
or row lock (shared read
lock before an exclusive
lock)

Yes Yes No ● Yes – if a dif
ferent row
or page

● No – if the
same row or
page

Yes Yes

An exclusive table lock No No No No No No

22 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Can Another Process Immediately Acquire:

If One Process Has:
A Shared Ta
ble Lock?

A Shared
Page or Row
Lock, or an
Update Page
or Row Lock?

An Exclusive Ta
ble Lock?

An Exclusive
Row or Page
Lock?

A Shared
Table In
tent Lock?

An Exclu
sive Table
Intent
Lock?

An exclusive row or page
lock

No ● Yes – if a
different
row or
page

● No – if
the same
row or
page

No ● Yes – if a dif
ferent row
or page

● No – if the
same row or
page

Yes Yes

A shared table intent lock
(preventing new conflict
ing exclusive table locks)

Yes Yes No Yes Yes Yes

An exclusive intent lock
(preventing new conflict
ing shared or exclusive
table locks)

No Yes No Yes Yes Yes

This table describes lock sufficiency:

Is That Lock Sufficient if the Task Needs:

If a Task Has: A Shared Lock An Update Lock An Exclusive Lock

A shared lock Yes No No

An update lock Yes Yes No

An exclusive lock Yes Yes Yes

This table summarizes partition lock compatibility:

Can Another Process Acquire:

Lock Type
Held:

An Exclusive
Partition Lock?

A Shared Parti
tion Lock?

An Exclusive
Intent Partition
Lock?

A Shared In
tent Partition
Lock?

An Exclusive
Covering Parti
tion Lock?

A Shared Cov
ering Partition
Lock?

An exclusive
partition lock

No No No No No No

A shared parti
tion lock

No Yes No Yes No Yes

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 23

Can Another Process Acquire:

Lock Type
Held:

An Exclusive
Partition Lock?

A Shared Parti
tion Lock?

An Exclusive
Intent Partition
Lock?

A Shared In
tent Partition
Lock?

An Exclusive
Covering Parti
tion Lock?

A Shared Cov
ering Partition
Lock?

An exclusive in
tent partition
lock

No No Yes Yes No No

A shared intent
partition lock

No Yes Yes Yes No Yes

An exclusive
covering parti
tion lock

No No No No Yes Yes

A shared cover
ing partition
lock

No Yes No Yes Yes Yes

This table describes a sufficiency matrix for partition locks:

Is That Lock Sufficient if the Task Needs:

Lock Type
Held:

An Exclusive
Partition
Lock?

A Shared Partition
Lock?

An Exclusive Intent Par
tition Lock?

A Shared In
tent Parti
tion Lock?

An Exclusive
Covering
Partition
Lock?

A Shared
Covering
Partition
Lock?

An exclusive
partition lock

Yes Yes Yes Yes Yes Yes

A shared par
tition lock

No Yes No Yes No Yes

An exclusive
intent parti
tion lock

No No Yes Yes No No

A shared in
tent partition
lock

No No No Yes No No

An exclusive
covering par
tition lock

No No No No Yes Yes

A shared cov
ering parti
tion lock

No No No No No Yes

This table describes a sufficiency matrix for schema locks:

Table 2:

Is That Lock Sufficient if the Task Needs:

Lock Type Held: An Exclusive Schema Lock? A Shared Schema Lock?

An exclusive schema lock Yes Yes

24 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Is That Lock Sufficient if the Task Needs:

Lock Type Held: An Exclusive Schema Lock? A Shared Schema Lock?

A shared schema lock No Yes

This table summarizes partition lock compatibility, showing when locks can be acquired immediately.

Can Another Process Acquire:

Lock Type Held: An Exclusive Schema Lock? A Shared Schema Lock?

An exclusive schema lock No No

A shared schema lock No Yes

1.6 How Isolation Levels Affect Locking

The SQL standard defines four levels of isolation for SQL transactions.

Each isolation level specifies the kinds of interactions that are not permitted while concurrent transactions are
executing—that is, whether transactions are isolated from each other, or if they can read or update information
in use by another transaction. Higher isolation levels include the restrictions imposed by the lower levels.

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted changes to data.

1 read committed The transaction is allowed to read only committed changes to data.

2 repeatable read The transaction can repeat the same query, and no rows that have been read
by the transaction are updated or deleted.

3 serializable read The transaction can repeat the same query, and receive exactly the same re
sults. No rows can be inserted that appear in the result set.

You can choose the isolation level for all select queries during a session, or you can choose the isolation level
for a specific query or table in a transaction.

At all isolation levels, all inserts, updates, and deletes acquire exclusive locks and hold them for the duration of
the transaction.

 Note
For tables that use allpages locking, requesting isolation level 2 also enforces isolation level 3. The SAP ASE
default isolation level is level 1.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 25

1.6.1 Isolation Level 0, Read Uncommitted

Level 0, also known as read uncommitted, allows a task to read uncommitted changes to data in the database.
This is also known as a dirty read, since the task can display results that are later rolled back.

T3 Event Sequence T4

begin transaction update account
set balance = balance - 100
where acct_number = 25 rollback transaction

T3 and T4 start. T3 up
dates balance for one ac
count by subtracting
$100. T4 queries current
sum of balance for ac
counts. T4 ends. T3 rolls
back, invalidating the re
sults from T4.

begin transaction select sum(balance)
from account
where acct_number < 50 commit transaction

If transaction T4 queries the table after T3 updates it, but before it rolls back the change, the amount
calculated by T4 is off by $100.The update statement in T3 acquires an exclusive lock on account. However,
T4 does not try to acquire a shared lock before querying account, so it is not blocked by T3. The opposite is
also true. If T4 begins to query account at isolation level 0 before T3 starts, T3 can still acquire its exclusive
lock on account while T4’s query executes, because T4 does not hold any locks on the pages it reads.

At isolation level 0, SAP ASE performs dirty reads by:

● Allowing another task to read rows, pages, or tables that have exclusive locks; that is, to read uncommitted
changes to data.

● Not applying shared locks on rows, pages, or tables being searched.

If the table uses allpages locking, a unique index is required to perform an isolation level 0 read, unless the
database is read-only. The index is required to restart the scan if an update by another process changes the
query’s result set by modifying the current row or page. Forcing the query to use a table scan or a nonunique
index can lead to problems if there is significant update activity on the underlying table, and is not
recommended.

Applications that can use dirty reads may see better concurrency and fewer deadlocks than when the same
data is accessed at a higher isolation level. If transaction T4 requires only an estimate of the current sum of
account balances, which probably changes frequently in a very active table, T4 should query the table using
isolation level 0. Other applications that require data consistency, such as queries of deposits and withdrawals
to specific accounts in the table, should avoid using isolation level 0.

Isolation level 0 can improve performance for applications by reducing lock contention, but can impose
performance costs in two ways:

● Dirty reads make in-cache copies of dirty data that the isolation level 0 application needs to read.
● If a dirty read is active on a row, and the data changes so that the row is moved or deleted, the scan must

be restarted, which may incur additional logical and physical I/O.

During deferred update of a data row, there can be a significant time interval between the delete of the index
row and the insert of the new index row. During this interval, there is no index row corresponding to the data
row. If a process scans the index during this interval at isolation level 0, it does not return the old or new value
of the data row. See “Deferred updates” in Chapter 1, “Understanding Query Processing” in Performance and
Tuning Series: Query Processing and Abstract Plans.

26 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

sp_sysmon reports on these factors. See “Data Cache Management” in Performance and Tuning Series:
Monitoring SAP ASE with sp_sysmon.

1.6.2 Isolation Level 1, Read Committed

Level 1, also known as read committed, prevents dirty reads.

Queries at level 1 can read only committed changes to data. At isolation level 1, if a transaction needs to read a
row that has been modified by an incomplete transaction in another session, the transaction waits until the first
transaction completes (either commits or rolls back.)

T5 Event Sequence T6

begin transaction update account
set balance = balance - 100
where acct_number = 25 rollback transaction

T5 and T6 start. T5 up
dates account after get
ting exclusive lock. T6
tries to get shared lock
to query account but
must wait until T5 re
leases its lock. T5 ends
and releases its exclu
sive lock. T6 gets shared
lock, queries account,
and ends.

begin transaction select sum(balance)
from account
where acct_number < 50 commit transaction

When the update statement in transaction T5 executes, SAP ASE applies an exclusive lock (a row-level or
page-level lock if acct_number is indexed; otherwise, a table-level lock) on account.

If T5 holds an exclusive table lock, T6 blocks trying to acquire its shared intent table lock. If T5 holds exclusive
page or exclusive row locks, T6 can begin executing, but is blocked when it tries to acquire a shared lock on a
page or row locked by T5. The query in T6 cannot execute (preventing the dirty read) until the exclusive lock is
released, when T5 ends with the rollback.

While the query in T6 holds its shared lock, other processes that need shared locks can access the same data,
and an update lock can also be granted (an update lock indicates the read operation that precedes the
exclusive-lock write operation), but no exclusive locks are allowed until all shared locks have been released.

1.6.3 Isolation Level 2, Repeatable Read

Level 2 prevents nonrepeatable reads.

These occur when one transaction reads a row and a second transaction modifies that row. If the second
transaction commits its change, subsequent reads by the first transaction yield results that are different from
the original read. Isolation level 2 is supported only on data-only-locked tables. In a session at isolation level 2,
isolation level 3 is also enforced on any tables that use the allpages locking scheme.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 27

T7 Event Sequence T8

begin transaction select balance
from account
where acct_number = 25
select balance
from account
where acct_number = 25 commit transaction

T7 and T8 start. T7 quer
ies the balance for one
account. T8 updates the
balance for that same ac
count. T8 ends. T7 makes
same query as before
and gets different results.

T7 ends.

begin transaction update account
set balance = balance - 100
where acct_number = 25 commit transaction

If transaction T8 modifies and commits the changes to the account table after the first query in T7, but before
the second one, the same two queries in T7 produce different results. Isolation level 2 blocks T8 from
executing. It would also block a transaction that attempted to delete the selected row.

1.6.4 Isolation Level 3, Serializable Reads

Level 3 prevents phantoms.

Phantoms occur when one transaction reads a set of rows that satisfy a search condition, and then a second
transaction modifies the data (through an insert, delete, or update statement). If the first transaction
repeats the read with the same search conditions, it obtains a different set of rows.

Table 3: Phantoms in Transactions

T9 Event Sequence T10

begin transaction select * from account
where acct_number < 25
select * from account
where acct_number < 25 commit transaction

T9 and T10 start. T9 quer
ies a certain set of rows.
T10 inserts a row that
meets the criteria for the
query in T9. T10 ends. T9
makes the same query and
gets a new row. T9 ends.

begin transaction insert into account
(acct_number, balance)
values (19, 500) commit transaction

If transaction T10 inserts rows into the table that satisfy T9’s search condition after T9 executes the first
select, subsequent reads by T9 using the same query result in a different set of rows.

SAP ASE prevents phantoms by:

● Applying exclusive locks on rows, pages, or tables being changed. It holds those locks until the end of the
transaction.

● Applying shared locks on rows, pages, or tables being searched. It holds those locks until the end of the
transaction.

● Using range locks or infinity key locks for certain queries on data-only-locked tables.

Holding the shared locks allows SAP ASE to maintain the consistency of the results at isolation level 3.
However, holding the shared lock until the transaction ends decreases SAP ASE concurrency by preventing
other transactions from getting their exclusive locks on the data.

28 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Table 4: Avoiding Phantoms in Transactions

T11 Event Sequence T12

begin transaction select * from
account holdlock
where acct_number < 25
select * from
account holdlock
where acct_number < 25 commit transaction

T11 and T12 start. T11
queries account and
holds acquired shared
locks. T12 tries to insert
row but must wait until
T11 releases its locks. T11
makes same query and
gets same results. T11
ends and releases its
shared locks. T12 gets its
exclusive lock, inserts
new row, and ends.

begin transaction insert into account
(acct_number, balance)
values (19, 500) commit transaction

In transaction T11, SAP ASE applies shared page locks and holds the locks until the end of T11. (If account is a
data-only-locked table, and no index exists on the acct_number argument, a shared table lock is acquired.)
The insert in T12 cannot get its exclusive lock until T11 releases its shared locks. If T11 is a long transaction,
T12 (and other transactions), may wait for longer periods of time. Use level 3 only when required.

1.6.5 SAP ASE Default Isolation Level

SAP ASE’s default isolation level is 1, which prevents dirty reads.

SAP ASE enforces isolation level 1 by:

● Applying exclusive locks on pages or tables being changed. It holds those locks until the end of the
transaction. Only a process at isolation level 0 can read a page locked by an exclusive lock.

● Applying shared locks on pages being searched. It releases those locks after processing the row, page, or
table.

Using exclusive and shared locks allows SAP ASE to maintain the consistency of the results at isolation level 1.
Releasing the shared lock after the scan moves off a page improves SAP ASE concurrency by allowing other
transactions to obtain their exclusive locks on the data.

1.7 Lock Types and Duration During Query Processing

The types and the duration of locks acquired during query processing depend on the type of command, the
locking scheme of the table, and the isolation level at which the command is run.

The lock duration depends on the isolation level and the type of query. Lock duration can be:

● Scan duration – locks are released when the scan moves off the row or page, for row or page locks, or when
the scan of the table completes, for table locks.

● Statement duration – locks are released when the statement execution completes.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 29

● Transaction duration – locks are released when the transaction completes.

Table 5: Lock Type and Duration Without Cursors

Statement Isolation Level
Locking
Scheme

Table
Lock

Data
Page
Lock

Index
Page
Lock

Data
Row
Lock Duration

select
readtext
any type of
scan

0 Allpages
Datapages
Datarows

- - - - - - - - - - - - No locks are acquired.

1 2 with
noholdlock
3 with
noholdlock

Allpages
Datapages
Datarows

IS IS IS S * - S - - - - * * Depends on setting of read
committed with lock.

2 Allpages
Datapages
Datarows

IS IS IS S S - S - - - - S Locks are released at the end of
the transaction.

select via
index scan

3 1 with
holdlock 2
with holdlock

Allpages
Datapages
Datarows

IS IS IS S S - S - - - - S Locks are released at the end of
the transaction.

select via
table scan

3 1 with
holdlock 2
with holdlock

Allpages
Datapages
Datarows

IS S S S - - - - - - - - Locks are released at the end of
the transaction.

insert 0, 1, 2, 3 Allpages
Datapages
Datarows

IX IX IX X X - X - - - - X Locks are released at the end of
the transaction.

writetext 0, 1, 2, 3 Allpages
Datapages
Datarows

IX IX IX X X - - - - - - X Locks are held on first text page
or row; locks released at the end
of the transaction.

delete
update any
type of scan

0, 1, 2 Allpages
Datapages
Datarows

IX IX IX U, X U,
X -

U, X - - - - U, X “U” locks are released after the
statement completes. “IX” and
“X” locks are released at the end
of the transaction.

delete
update via
index scan

3 Allpages
Datapages
Datarows

IX IX IX U, X U,
X -

U, X - - - - U, X “U” locks are released after the
statement completes. “IX” and
“X” locks are released at the end
of the transaction.

delete
update via
table scan

3 Allpages
Datapages
Datarows

IX X X U, X - - - - - - - - Locks are released at the end of
the transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

30 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

Table 6: Lock Type and Duration With Cursors

Statement Isolation Level
Locking
Scheme

Table
Lock

Data
Page
Lock

Index
Page
Lock

Data
Row
Lock Duration

select
(without for
clause)
select...
for read
only

0 Allpages Da
tapages Data
rows

- - - - - - - - - - - - No locks are acquired.

1 2 with
noholdlock 3
with
noholdlock

Allpages Da
tapages Data
rows

IS IS IS S * - S - - - - * * Depends on setting of read
committed with lock.

2, 3

1 with holdlock

2 with
holdlock

Allpages Da
tapages Data
rows

IS IS IS S S - S - - - - S Locks become transactional af
ter the cursor moves out of the
page/row. Locks are released at
the end of the transaction.

select...
for
update

1 Allpages Da
tapages Data
rows

IX IX IX U, X U,
X -

X - - - - U, X “U” locks are released after the
cursor moves out of the page/
row. “IX” and “X” locks are re
leased at the end of the trans
action.

select...
for
update
with
shared

1 Allpages Da
tapages Data
rows

IX IX IX S, X S,
X -

X - - - - S, X “S” locks are released after the
cursor moves out of page/row.
“IX” and “X” locks are released
at the end of the transaction.

select...
for
update

2, 3, 1 holdlock

2, holdlock

Allpages Da
tapages Data
rows

IX IX IX U, X U,
X -

X - - - - U, X Locks become transactional af
ter the cursor moves out of the
page/row. Locks are released at
the end of the transaction.

select...
for
update
with
shared

2, 3

1 with holdlock
2 with
holdlock

Allpages Da
tapages Data
rows

IX IX IX S, X S,
X -

X - - - - S, X Locks become transactional af
ter the cursor moves out of the
page/row. Locks are released at
the end of the transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

Related Information

Locking for Select Queries at Isolation Level 1 [page 32]

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 31

Isolation Level 2 and Allpages-locked Tables [page 33]
Locking for Select Queries at Isolation Level 1 [page 32]

1.7.1 Lock Types During Create Index Commands

Summary table of locks applied by SAP ASE for create index statements.

Statement Table Lock Data Page Lock

create clustered index X -

create nonclustered index S -

Function-based indexes X X

Key: S = shared, X = exclusive

1.7.2 Locking for Select Queries at Isolation Level 1

When a select query on an allpages-locked table performs a table scan at isolation level 1, it first acquires a
shared intent lock on the table and then acquires a shared lock on the first data page.

It locks the next data page, and drops the lock on the first page, so that the locks “walk through” the result set.
As soon as the query completes, the lock on the last data page is released, and then the table-level lock is
released. Similarly, during index scans on an allpages-locked table, overlapping locks are held as the scan
descends from the index root page to the data page. Locks are also held on the outer table of a join while
matching rows from the inner table are scanned.

select queries on data-only-locked tables first acquire a shared intent table lock. You can configure locking
behavior on data pages and data rows issuing the parameter read committed with lock, as follows:

● If read committed with lock is set to 0 (the default), then select queries read the column values
with instant-duration page or row locks. The required column values or pointers for the row are read into
memory, and the lock is released. Locks are not held on the outer tables of joins while rows from the inner
tables are accessed. This reduces deadlocking and improves concurrency.
If a select query needs to read a row that is locked with an incompatible lock, the query still blocks on
that row until the incompatible lock is released. Setting read committed with lock to 0 does not
affect the isolation level; only committed rows are returned to the user.

● If read committed with lock is set to 1, select queries acquire shared page locks on datapages-
locked tables and shared row locks on datarows-locked tables. The lock on the first page or row is held,
then the lock is acquired on the second page or row and the lock on the first page or row is dropped.

You must declare cursors as read-only to avoid holding locks during scans when read committed with
lock is set to 0. Any implicitly or explicitly updatable cursor on a data-only-locked table holds locks on the
current page or row until the cursor moves off the row or page. When read committed with lock is set to 1,
read-only cursors hold a shared page or row lock on the row at the cursor position.

32 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

read committed with lock does not affect locking behavior on allpages-locked tables. For more
information, see Reference Manual: Configuration Parameters.

1.7.3 Table Scans and Isolation Levels 2 and 3

Special considerations are made for locking during table scans at isolation levels 2 and 3.

1.7.3.1 Table Scans and Table Locks at Isolation Level 3

When a query performs a table scan at isolation level 3 on a data-only-locked table, a shared or exclusive table
lock provides phantom protection and reduces the locking overhead of maintaining a large number of row or
page locks.

On an allpages-locked table, an isolation level 3 scan first acquires a shared or exclusive intent table lock and
then acquires and holds page-level locks until the transaction completes or until the lock promotion threshold
is reached and a table lock can be granted.

1.7.3.2 Isolation Level 2 and Allpages-locked Tables

On allpages-locked tables, SAP ASE supports isolation level 2 (repeatable reads) by also enforcing isolation
level 3 (serializable reads).

If transaction level 2 is set in a session, and an allpages-locked table is included in a query, isolation level 3 is
also applied on the allpages-locked tables. Transaction level 2 is used on all data-only-locked tables in the
session.

1.7.4 When Update Locks Are Not Required

All update and delete commands on an allpages-locked table first acquire an update lock on the data page
and then change to an exclusive lock if the row meets the qualifications in the query.

update and delete commands on data-only-locked tables do not first acquire update locks when the query:

● Includes search arguments for every key in the index chosen by the query, so that the index unambiguously
qualifies the row, and

● Does not contain an or clause.

Updates and deletions that meet these requirements immediately acquire an exclusive lock on the data page or
data row. This reduces lock overhead.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 33

1.7.5 Locking During or Processing

In some cases, queries using or clauses are processed as a union of more than one query.

Although some rows may match more than one of the or conditions, each row must be returned only once.
Different indexes can be used for each or clause. If any of the clauses do not have a useful index, the query is
performed using a table scan.

The table’s locking scheme and the isolation level affect how or processing is performed and the types and
duration of locks that are held during the query.

1.7.5.1 Processing or Queries for Allpages-locked Tables

If the or query uses the “or” strategy (different or clauses might match the same rows), query processing
retrieves the row IDs and matching key values from the index and stores them in a worktable, holding shared
locks on the index pages containing the rows.

When all row IDs have been retrieved, the worktable is sorted to remove duplicate values. Then, the worktable
is scanned, and the row IDs are used to retrieve the data rows, acquiring shared locks on the data pages. The
index and data page locks are released at the end of the statement (for isolation level 1) or at the end of the
transaction (for isolation levels 2 and 3).

If the or query has no possibility of returning duplicate rows, no worktable sort is needed. At isolation level 1,
locks on the data pages are released as soon as the scan moves off the page.

1.7.5.2 Processing or Queries for Data-only-locked Tables

On data-only-locked tables, the type and duration of locks acquired for or queries using the “or” strategy
(when multiple clauses might match the same rows) depend on the isolation level.

1.7.5.2.1 Processing or Queries at Isolation Levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked tables while row IDs are being retrieved
from indexes and copied to a worktable.

After the worktable is sorted to remove duplicate values, the data rows are requalified when the row IDs are
used to read data from the table. If any rows were deleted, they are not returned. If any rows were updated,
they are requalified by applying the full set of query clauses to them. The locks are released when the row
qualification completes, for isolation level 1, or at the end of the transaction, for isolation level 2.

34 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

1.7.5.2.2 Processing or Queries at Isolation Level 3

Isolation level 3 requires serializable reads. At this isolation level, or queries obtain locks on the data pages or
data rows during the first phase of or processing, as the worktable is being populated. These locks are held
until the transaction completes. Requalification of rows is not required.

1.7.6 Skip Uncommitted inserts During selects

select queries on data-only-locked tables do not block on uncommitted insertions when certain condition
care met.

● The table uses datarow locking, and
● The isolation level is 1 or 2.

Under these conditions, scans skip such a row.

The only exception to this rule is if the transaction performing the uncommitted insert was overwriting an
uncommitted delete of the same row done earlier by the same transaction. In this case, scans block on the
uncommitted inserted row.

1.7.6.1 Skip Uncommitted inserts During deletes, updates,
and inserts

delete and update queries behave the same way as scans do, with regard to uncommitted inserts. When the
delete or update command encounters an uncommitted inserted row with the key value of interest, it skips it
without blocking.

The only exception to this rule is if the transaction doing the uncommitted insert was overwriting an
uncommitted delete of the same row done earlier by the same transaction. In this case, updates and
deletes block on the uncommitted inserted row.

Insert queries, upon encountering an uncommitted inserted row with the same key value, raise a duplicate key
error if the index is unique.

1.7.6.2 Locking during DMLs on Tables with Referential
Integrity Constraints

When a transaction inserts a row in a table with a foreign key constraint, it performs a scan at isolation level 2
on the table with the primary key constraint (which is referenced by the table with the foreign key constraint).

SAP ASE performs this scan so the row is not updated or deleted until the transaction commits. Any updates
and deletes on the table being scanned block on the referenced key of the row being inserted but is not yet
committed.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 35

Similarly, when a transaction attempts to delete a row from a table with a primary key constraint, it performs a
scan at isolation level 3 on tables with foreign key constraints that reference this table. SAP ASE does not allow
a row insert into these tables until the transaction deleting the row commits.

1.7.7 Using Alternative Predicates to Skip Nonqualifying Rows

When a select query includes multiple where clauses linked with and, SAP ASE can apply the qualification for
any columns that have not been affected by an uncommitted update of a row.

If the row does not qualify because of one of the clauses on an unmodified column, the row does not need to be
returned, so the query does not block.

If the row qualifies when the conditions on the unmodified columns have been checked, and the conditions
described below do not allow the query to proceed, then the query blocks until the lock is released.

For example, transaction T15 in updates balance, while transaction T16 includes balance in the result set and
in a search clause. However, T15 does not update the branch column, so T16 can apply that search argument.
It describes a transaction using pseudo columns, which are columns in the index table that define the
parameters of the search and provide access to the results data.

Since the branch value in the row affected by T15 is not 77, the row does not qualify, and the row is skipped, as
shown. If T15 updated a row where branch equals 77, a select query would block until T15 either commits or
rolls back.

T15 Event Sequence T16

begin transaction update accounts
set balance = 80
where acct_number = 20
and branch = 23 commit transaction

T15 and T16 start. T15
updates accounts and
holds an exclusive row
lock. T16 queries ac
counts, but does not
block because the branch
qualification can be ap
plied.

begin transaction select acct_number, balance
from accounts
where balance < 50
and branch = 77 commit tran

For select queries to avoid blocking when they reference columns in addition to columns that are being
updated, all of the following conditions must be met:

● The table must use datarows or datapages locking.
● At least one of the search clauses of the select query must be on a column that is among the first 32

columns of the table.
● The select query must run at isolation level 1 or 2.
● The configuration parameter read committed with lock must be set to 0, the default value.

Related Information

Qualify Old and New Values for Uncommitted Updates [page 38]

36 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

1.8 Pseudocolumn-level Locking

During concurrent transactions that involve select and update commands, pseudo-column-level locking can
allow some queries to return values from locked rows, and can allow other queries to avoid blocking on locked
rows that do not qualify.

Pseudo-column-level locking can reduce blocking when:

● The select query does not reference columns on which there is an uncommitted update.
● The where clause of a select query references one or more columns affected by an uncommitted update,

but the row does not qualify due to conditions in other clauses.
● Neither the old nor the new value of the updated column qualifies, and an index containing the updated

column is being used.

1.8.1 Select Queries That Do Not Reference the Updated
Column

A select query on a datarows-locked table can return values without blocking, even though a row is
exclusively locked.

This happens when:

● The query does not reference an updated column in the select list or any clauses (where, having, group
by, order by or compute), and

● The query does not use an index that includes the updated column.

Transaction T14 requests information about a row that is locked by T13. However, since T14 does not include
the updated column in the result set or as a search argument, T14 does not block on T13’s exclusive row lock.

T13 Event Sequence T14

begin transaction update accounts
set balance = 50
where acct_number = 35 commit transaction

T13 and T14 start. T13 up
dates accounts and holds
an exclusive row lock. T14
queries the same row in
accounts, but does not
access the updated col
umn. T14 does not block.

begin transaction select lname, fname, phone
from accounts
where acct_number = 35 commit transaction

If T14 uses an index that includes the updated column (for example, acct_number, balance), the query
blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated columns, all of the following
conditions must be met:

● The table must use datarows locking.
● The columns referenced in the select query must be among the first 32 columns of the table.
● The select query must run at isolation level 1.

Performance and Tuning Series: Locking and Concurrency Control
Introduction to Locking P U B L I C 37

● The select query must not use an index that contains the updated column.
● The configuration parameter read committed with lock must be set to 0, the default value.

1.8.2 Qualify Old and New Values for Uncommitted Updates

If a select query includes conditions on a column affected by an uncommitted update, and the query uses an
index on the updated column, the query can examine both the old and new values for the column.

This occurs:

● If neither the old or new value meets the search criteria, the row can be skipped, and the query does not
block.

● If the old value, the new value, or both values qualify, the query blocks. In this table, if the original balance is
$80, and the new balance is $90, the row can be skipped, as shown. If either of the values is less than $50,
T18 must wait until T17 completes.

T17 Event Sequence T18

begin transaction update accounts
set balance = balance + 10
where acct_number = 20 commit transaction

T17 and T18 start. T17
updates accounts and
holds an exclusive row
lock; the original bal
ance was 80, so the new
balance is 90. T18 quer
ies accounts using an in
dex that includes bal
ance. It does not block
since balance does not
qualify

begin transaction select acct_number, balance
from accounts
where balance < 50 commit tran

For select queries to avoid blocking when old and new values of uncommitted updates do not qualify, all of
the following conditions must be met:

● The table must use datarows or datapages locking.
● At least one of the search clauses of the select query must be on a column that is among the first 32

columns of the table.
● The select query must run at isolation level 1 or 2.
● The index used for the select query must include the updated column.
● The configuration parameter read committed with lock must be set to 0, the default value.

38 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Introduction to Locking

2 Snapshot Isolation Level and Locking

In addition to the ANSIspecified isolation level, SAP ASE also offers three additional isolation levels:
statement snapshot, transaction snapshot, and readonly statement snapshot. Snapshot
isolation is supported only on datarow-locked tables that are enabled for in-memory row storage.

Snapshot isolation levels guarantee that all reads made in a transaction see a consistent snapshot of the
database (it reads the last committed values that existed at the time it started), and the transaction itself
successfully commits only if no updates it has made conflict with any concurrent update made since that
snapshot.

Snapshot isolation levels are used with multiversion concurrency control (MVCC), which allows the server to
lock rows for writing in one session while granting access to unaltered versions of these rows in another
session. That is, reads never wait for writes, and writes never wait for reads, alleviating concurrency.

MVCC provides multiple versions of a single row, and snapshot isolation allows the server to access a version of
this row at a specific snapshot of time. The server uses versions of the rows with time stamps hosted in the
IMRS, allowing for in-memory versioning, to provide snapshot isolation. select statements can access their
version of the row from the IMRS, without being blocked by or blocking concurrent users updating the same
rows.

Use MVCC and snapshot isolation levels in conjunction with the in-memory row storage feature. See the In-
Memory Database Users Guide for more information about configuring SAP ASE for row storage.

Once a table is enabled for snapshot isolation, any change to a data row causes the server to create a new
version of the data row. Since multiple versions are available and there is a welldefined rule about which
transaction sees which data, locking is not required to qualify the data rows. The scans or select queries with
snapshot isolation-level scans need not acquire any transactional lock on qualified data rows. This example,
which does not use snapshot isolation, describes how an update can block a select query due to the locks it
acquires:

Session 1 Session 2 Comments

begin tran

update t1 set t1.a = 5 where t1.b = 'target'

select * from t1 The scan for the select in session 1
blocks since the update in session 2
has acquired locks on some rows.

commit tran

select returns the results The select in session 1 returns re
sults only after session 2 commits.

Performance and Tuning Series: Locking and Concurrency Control
Snapshot Isolation Level and Locking P U B L I C 39

However, if you configure the session for snapshot isolation, the update no longer acquires the locks, and the
select proceeds:

Session 1 Session 2 Comments

set transaction
isolation statement snapshot

begin tran

update t1 set t1.a = 5 where t1.b = 'target'

select * from t1

select returns the results.

The scan for select in session 1 re
turns the results immediately and does
not block while it waits for the update
transaction in session 2 to complete.
The value returned for t1.a is the pre
updated value for rows where t2.b =
'target'.

commit tran

 Note
If some tables involved in a transaction are not MVCC or on-disk MVCC-enabled, the transaction switches
to the default isolation mode. That is, for statement snapshot it will be isolation level 1 and for
transaction snapshot it will be isolation level 2.

Considerations for locks and updates for the snapshot isolation levels:

● statement snapshot ‒ acquires locks on the rows as they are qualified during the scan and before they
get modified. The update keeps the locks acquired during previous passes in case the command must re-
execute, improving the chances of completing the update. Updates qualify the version of the row
according to the timestamp, and if it qualifies, verifies whether it is the latest committed version of the row.
If not, the update acquires a new timestamp and re-executes the statement. This cycle repeats until the
evaluation succeeds with the new timestamp, and the row is updated with latest committed version. Since
this is an update operation, it works under an exclusive lock, and any other update or delete queries
from other session must wait (selects queries, however, can proceed).

● transaction snapshot ‒ the statement ―not the transaction― gets rolled back for a write conflict.
● readonly statement snapshot ‒ since scans are performed on the latest committed versions and not

with timestamp, there are no writeconflicts, and qualified rows are immediately locked, similar to non-
snapshot isolation levels.

40 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Snapshot Isolation Level and Locking

3 Locking Configuration and Tuning

SAP ASE includes a number of lock types and a number of commands that can affect locking.

3.1 Locks and Performance

Locking affects the SAP ASE performance by limiting concurrency. An increase in the number of simultaneous
users may increase lock contention, which decreases performance.

Locks affect performance when:

● Processes wait for locks to be released. Any time a process waits for another process to complete its
transaction and release its locks, overall response time and throughput are affected.

● Transactions result in frequent deadlocks. A deadlock causes one transaction to be aborted, and the
transaction must be restarted by the application. If deadlocks occur often, the throughput of applications
is severely affected.
To help reduce deadlock frequency, change the locking scheme to datapages or datarows locking, or
redesign the way transactions access data.

● Creating indexes locks tables. Creating a clustered index locks all users out of the table until the index is
created; creating a nonclustered index locks out all updates until it is created.
Either way, create indexes when there is little activity on your server.

● Turning off delayed deadlock detection causes spinlock contention.
Setting deadlock checking period to 0 causes more frequent deadlock checking. The deadlock
detection process holds spinlocks on the lock structures in memory while it looks for deadlocks.
In a high transaction production environment, do not use the deadlock checking period parameter.

3.1.1 sp_sysmon and sp_object_stats Usage

Many of the following sections suggest that you change configuration parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determine whether lock contention is a problem. Then use the
stored procedures to determine how tuning to reduce lock contention affects the system.

See “Lock management” in Performance and Tuning Series: Monitoring SAP ASE with sp_sysmon for more
information about using sp_sysmon to view lock contention.

If lock contention is a problem, you can use SAP ASE Monitor or the monitoring tables to pinpoint locking
problems by checking locks per object.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 41

Related Information

Identify Tables Where Concurrency is a Problem [page 72]

3.1.2 Reduce Lock Contention

Lock contention can impact SAP ASE throughput and response time. Make sure you are using the correct
locking during database design (for example, to avoid joining a high number of tables during queries), and
monitor locking during application design.

Address locking contention by changing the locking scheme for tables with high contention, or redesigning the
application or tables that have the highest lock contention. For example:

● Add indexes to reduce contention, especially for deletions and updates.
● Keep transactions short to reduce the time that locks are held.
● Check for contention “hot spots,” especially insertions on allpages-locked heap tables (a heap table is a

table that has no clustered index).

Additionally, you can reduce spinlock contention in high-performance situations by using the transactional
memory feature available with the MemScale option. See Transactional Memory [page 45].

3.1.2.1 Reducing Contention Between Updates and Selects

Certain tasks help reduce lock contention between update and select queries.

● Use datarows or datapages locking for tables with lock contention caused by update and select
commands.

● If tables have more than 32 columns, make the first 32 columns the columns most frequently used as
search arguments and in other query clauses.

● Select only needed columns. Avoid using select * when all columns are not needed by the application.
● Use any available predicates for select queries. When a table uses datapages locking, the information

about updated columns is kept for the entire page, so that if a transaction updates some columns in one
row, and other columns in another row on the same page, any select query that needs to access that
page must avoid using any of the updated columns.

3.1.2.2 Lock Management Enhancements

SAP ASE version 16.0 and later includes several enhancements to lock management.

Spinlocks in versions of SAP ASE earlier than 16.0 occasionally result in lock contention. Reduce lock
contention by optimizing the following areas:

● Engine lock transfer – Improves the transfers of locks between global pool and engine local caches.
● Engine lock caching – Optimizes the number of locks an engine can cache locally by:

42 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

○ Increasing the default engine local cache size
○ Increasing the transfer size of locks from global to local caches.
○ Improves lock transfers between local and global by using of blocks of locks instead of individual locks
○ Draining or reclaiming locks from local to global caches less frequently

● Lock promotion - Tracks repeatedly failed lock promotion attempts, and disables lock promotion for the
DML statement incurring the failed lock promotion after a number of attempts.

● Log semaphore locks - Avoids taking locks for log semaphores since only one lock can be held by the
semawait.

● Deadlock checking - Ensures that specifying a small value for the deadlock checking period never
results in a value less than 1, and that deadlock checks are performed on a dedicated service thread

● Hot DOL tables - Allows DOL tables to be hot tables, which alleviates high table lock contention

These features are intended to enhance performance: you should not notice any performance degradation
when SAP ASE uses these enhancements. The lock management enhancements are enabled by default, and
you need not to perform any configuration to enable these enhancements.

In high performance, high core situations, the main obstruction to scaling is that many threads are busy waiting
on spinlocks. To reduce spinlock contention in these instances, use the transactional memory feature.

 Note
Transactional memory is supported only on Intel Haswell EX processors on Linux.

Enable transactional memory by first enabling the MemScale option. See SAP ASE Options in the Installation
Guide for your platform for information about enabling the Database MemScale option. Then, set the enable
transactional memory configuration parameter.

3.1.2.3 Add Indexes to Reduce Contention

For data-only-locked tables, an update or delete statement that has no useful index on its search arguments
results in a table scan that holds an exclusive table lock for the entire scan time.

If the data modification task also updates other tables:

● It can be blocked by select queries or other updates.

● It may be blocked and have to wait while holding large numbers of locks.

● It can block or deadlock with other tasks.

Creating a useful index for the query allows the data modification statement to use page or row locks,
improving concurrent access to the table. If you cannot create an index for a lengthy update or delete
transaction, you can perform the operation in a cursor, with frequent commit transaction statements to
reduce the number of page locks.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 43

3.1.2.4 Retain Short Transactions

Keep any transaction that acquires locks as short as possible. In particular, avoid transactions that wait for user
interaction while holding locks.

Table 7: Examples

With Page-level Locking With Row-level Locking

begin tran

select balance from account holdlock where acct_number = 25

Intent shared table lock Shared
page lock

Intent shared table lock Shared row
lock

If the user goes to lunch now, no
one can update rows on the page
that holds this row.

If the user goes to lunch now, no
one can update this row.

update account set balance = balance + 50 where acct_number = 25

Intent exclusive table lock Update
page lock on data page followed by
exclusive page lock on data page

Intent exclusive table lock Update
row lock followed by exclusive row
lock.

No one can read rows on the page
that holds this row.

No one can read this row.

commit tran

Avoid network traffic as much as possible within transactions. The network is slower than SAP ASE. The
example below shows a transaction executed from isql, sent as two packets.

begin tran update account
set balance = balance + 50
where acct_number = 25 go

isql batch sent to SAP ASE Locks held waiting for commit

update account set balance = balance - 50
where acct_number = 45
commit tran go

isql batch sent to SAP ASE Locks released

Keeping transactions short is especially crucial for data modifications that affect nonclustered index keys on
allpages-locked tables.

Nonclustered indexes are dense: the level above the data level contains one row for each row in the table. All
inserts and deletes to the table, and any updates to the key value, affect at least one nonclustered index
page, and adjoining pages in the page chain, if a page split or page shrink takes place.

While locking a data page may slow access for a small number of rows, locks on frequently used index pages
can block access to a much larger set of rows.

44 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

3.1.2.5 Avoid Hot Spots

Hot spots occur when all updates take place on a certain page, as in an allpages-locked heap table, where all
insertions happen on the last page of the page chain.

For example, an unindexed history table that is updated by everyone always has lock contention on the last
page. This sample output from sp_sysmon shows that 11.9% of the inserts on a heap table need to wait for the
lock:

Last Page Locks on Heaps Granted 3.0 0.4 185 88.1 % Waited 0.4 0.0 25 11.9 %

To avoid this:

● Change the lock scheme to datapages or datarows locking.
Since these locking schemes do not have chained data pages, they can allocate additional pages when
blocking occurs for inserts.

● Partition the table using the round-robin strategy. Partitioning a heap table creates multiple page chains in
the table, and, therefore, multiple last pages for insertions.
Concurrent inserts to the table are less likely to block one another, since multiple last pages are available.
Partitioning improves concurrency for heap tables without creating separate tables for different groups of
users.
See “Improving insert performance with partitions” in Performance and Tuning Series: Physical Database
Tuning for information about partitioning tables.

● Create a clustered index to distribute updates across the data pages in the table.
Like partitioning, this creates multiple insertion points for the table. However, it also introduces overhead
for maintaining the physical order of the table’s rows.

3.1.2.6 Transactional Memory

In high performance, high core situations, use the transactional memory feature to reduce spinlock contention.

Transactional memory is included with the MemScale option and is currently supported on Haswell and
Broadwell processors on Linux.

Enable transactional memory by first setting the enable mem scale configuration parameter. Then, set the
enable transactional memory configuration parameter.

To find out if your machine supports Transactional Synchronization Extensions (TSX):

1. Enter the following in the command line to query the model number:

cat /proc/cpuinfo | grep 'model name' | head -1
An example of the return value is:
model name : Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz

2. Go to http://ark.intel.com/ and enter the model number in the Search specification field. In the example
above, the model number is E7-4880.

3. Select the entry with the exact model and version number.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 45

http://help.sap.com/disclaimer?site=http%3A%2F%2Fark.intel.com%2F

4. In the specification form, note the Code Name. Code names Haswell or Broadwell indicate that the
machine supports TSX. Code names Sandy Bridge, Ivy Bridge, or Westmere indicate that the machine does
not support TSX. For other names, consult Intel directly.

Additional information is available here: https://software.intel.com/en-us/blogs/2013/06/07/web-resources-
about-intelr-transactional-synchronization-extensions

3.1.3 Additional Locking Guidelines

Locking guidelines that can help reduce lock contention and speed performance.

● Use the lowest level of locking required by each application. Use isolation level 2 or 3 only when necessary.
Updates by other transactions may be delayed until a transaction using isolation level 3 releases any of its
shared locks at the end of the transaction.
Use isolation level 3 only when nonrepeatable reads or phantoms may interfere with results.
If only a few queries require isolation level 3, use the holdlock keyword or the at isolation
serializing clause in those queries rather than using set transaction isolation level 3 for
the entire transaction.
If most queries in the transaction require isolation level 3, use set transaction isolation level 3,
but use noholdlock or at isolation read committed in the queries that can execute at isolation
level 1.

● To perform mass insertions, updates, or deletions on active tables, reduce blocking by performing the
operation inside a stored procedure using a cursor, with frequent commits.

● If the application must return a row, wait for user interaction, and then update the row, consider using
timestamps and the tsequal function rather than holdlock.

● If you use third-party software, check the locking model in applications carefully for concurrency problems.

Other tuning efforts can also help reduce lock contention. For example, if a process holds locks on a page, and
must perform a physical I/O to read an additional page, the process holds the lock much longer than it would if
the additional page were already in cache. In this case, better cache utilization or the use of large I/O can
reduce lock contention. You can also reduce lock contention by improving indexing and distributing physical
I/O evenly across disks.

3.1.4 Improved Concurrency for Partition-Level Online
Operations

Certain partition-level operations can concurrently operate on different partitions of a table. DML can also
concurrently operate on the table while the partition-level online operation is running.

These include:

● alter table … split partition
● alter table … merge partition
● alter table … move partition
● alter table … drop partition
● truncate partition

46 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

● dbcc checkindex
● dbcc checktable
● dbcc tablealloc
● dbcc indexalloc

3.2 Lock Configuration and Promotion Thresholds

A system administrator can configure locks and lock promotion thresholds.

● The total number of locks available to processes on SAP ASE
● The size of the lock hash table and the number of spinlocks that protect the page/row lock hash table,

table lock hash table, and address lock hash table
● The server-wide lock timeout limit, and the lock timeout limit for distributed transactions
● Lock promotion thresholds, server-wide, for a database or for particular tables
● The number of locks available per engine and the number of locks transferred between the global free lock

list and the engines

3.2.1 Lock Promotion

Table lock promotion promotes locks from finegrained locks to table locks. Partition lock promotion promotes
locks from finegrained locks to partition locks.

For partition lock promotion to occur, set the partition lock promotion threshold to a nonzero value.

Partition locks use the same semantics as table locks. Page or row locks belonging to a partition under a single
partition scan that exceeds its lock promotion threshold can then trigger lock promotion to a partition lock.

When a page or row lock is acquired with an unknown partition, lock promotion to the partition lock is
completely disabled. In these situations, locks can only be promoted to table level.

SAP ASE supports two different types of lock promotion:

● Row or page to table lock – if a task acquires locks within a single scan of a table on as many number of
rows or pages that exceed the table-level lock promotion threshold, then SAP ASE tries to acquire shared
table or exclusive table locks on the corresponding table and replace all existing rows or pages in that table.
Table-level lock promotion is also triggered when row or page locks are acquired with an unknown ID when
the owning partition is not known for the lock promotion.

● Row or page to partition lock – during partition lock promotion the appropriate shared or exclusive
partition lock is acquired and all of the finegrained locks acquired as part of the scan (or DML) and
belonging to the partition are released.
○ Partition lock promotion promotes shared finegrained locks to shared partition locks.
○ Partition lock promotion promotes exclusive finegrained locks to exclusive partition locks.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 47

3.2.2 Configuring the SAP ASE Lock Limit

By default, SAP ASE is configured with 10000 locks. System Administrators can use sp_configure to change
this limit.

For example:

sp_configure "number of locks", 25000

You may also need to adjust the sp_configure parameter max memory, since each lock uses memory.

The number of locks required by a query can vary widely, depending on the locking scheme and on the number
of concurrent and parallel processes and the types of actions performed by the transactions. Configuring the
correct number for your system is a matter of experience and familiarity with the system.

Start with 20 locks for each active concurrent connection, plus 20 locks for each worker process. Consider
increasing the number of locks if:

● You use datarows locking
● Queries run at isolation level 2 or 3, or use serializable or holdlock
● Parallel query processing is enabled, especially for isolation level 2 or 3 queries
● You perform many multirow updates
● You increase lock promotion thresholds

3.2.2.1 Estimate Number of Locks for Data-only-locked
Tables

Changing to data-only locking may require more locks or may reduce the number of locks required.

● Tables using datapages locking require fewer locks than tables using allpages locking, since queries on
datapages-locked tables do not acquire separate locks on index pages.

● Tables using datarows locking can require a large number of locks. Although no locks are acquired on index
pages for datarows-locked tables, data modification commands that affect many rows may hold more
locks.
Queries running at transaction isolation level 2 or 3 can acquire and hold very large numbers of row locks.

48 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

3.2.2.1.1 insert Commands and Locks

An insert with allpages locking requires <N>+1 locks, where <N> is the number of indexes. The same insert on
a data-only-locked table locks only the data page or data row.

3.2.2.1.2 select Queries and Locks

Scans at transaction isolation level 1, with read committed with lock set to hold locks (1), acquire
overlapping locks that roll through the rows or pages, so they hold, at most, two data page locks at a time.

However, transaction isolation level 2 and 3 scans, especially those using datarows locking, can acquire and
hold very large numbers of locks, especially when running in parallel. Using datarows locking, and assuming no
blocking during lock promotion, the maximum number of locks that might be required for a single table scan is:

row lock promotion HWM * parallel_degree

If lock contention from exclusive locks prevents scans from promoting to a table lock, the scans can acquire a
very large number of locks.

Instead of configuring the number of locks to meet the extremely high locking demands for queries at isolation
level 2 or 3, consider changing applications that affect large numbers of rows to use the lock table
command. This command acquires a table lock without attempting to acquire individual page locks.

Related Information

lock table [page 84]

3.2.2.1.3 Data Modification Commands and Locks

For tables that use the datarows-locking scheme, data modification commands can require many more locks
than data modification on allpages- or datapages-locked tables.

For example, a transaction that performs a large number of inserts into a heap table may acquire only a few
page locks for an allpages-locked table, but requires one lock for each inserted row in a datarows-locked table.
Similarly, transactions that update or delete large numbers of rows may acquire many more locks with
datarows locking.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 49

3.2.2.2 Limiting User Locks Per Session

Set lock_count resource limit to restrict the number of logical locks used simultaneously by a user process.
The lock_count limit prevents a user or application from draining locks in reserve, preventing the server from
entering an “out of locks” state.

See "Limiting User Locks Per Session" in System Administration Guide: Volume 2 and
sp_add_resource_limit procedure documentation in the Reference Manual: Procedures.

3.2.3 Set Lock Promotion Thresholds

The lock promotion thresholds set the number of page or row locks permitted by a task or worker process
before SAP ASE attempts to escalate to a table lock on the object.

You can set lock promotion thresholds at the server-wide level, at the database level, and for individual tables.

Configuring the thresholds higher reduces the chance of queries acquiring table locks, especially for very large
tables where queries lock hundreds of data pages.

 Note
Lock promotion is always two-tiered: from page locks to partition or table locks or from row locks to
partition or table locks. Row locks are never promoted to page locks.

3.2.3.1 Lock Promotion and Scan Sessions

Lock promotion occurs on a per-scan-session basis.

A scan session is how SAP ASE tracks scans of tables within a transaction. A single transaction can have more
than one scan session for the following reasons:

● A table may be scanned more than once inside a single transaction in the case of joins, subqueries,
exists clauses, and so on. Each scan of the table is a scan session.

● A query executed in parallel scans a table using multiple worker processes. Each worker process has a
scan session.

A scan session may scan data from more than one partition. Lock promotion is based on the number of page or
row locks acquired across all the partitions accessed in the scan.

A table lock is more efficient than multiple page or row locks when an entire table might eventually be needed.
At first, a task acquires page or row locks, then attempts to escalate to a table lock when a scan session
acquires more page or row locks than the value set by the lock promotion threshold.

Since lock escalation occurs on a per-scan-session basis, the total number of page or row locks for a single
transaction can exceed the lock promotion threshold, as long as no single scan session acquires more than the
lock promotion threshold number of locks. Locks may persist throughout a transaction, so a transaction that
includes multiple scan sessions can accumulate a large number of locks.

50 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

Lock promotion cannot occur if another task holds locks that conflict with the type of table lock needed. For
instance, if a task holds any exclusive page locks, no other process can promote to a table lock until the
exclusive page locks are released.

When lock promotion is denied due to conflicting locks, a process can accumulate page or row locks in excess
of the lock promotion threshold and may exhaust all available locks in SAP ASE.

The lock promotion parameters are:

● For allpages-locked tables and datapages-locked tables, page lock promotion HWM, page lock
promotion LWM, and page lock promotion PCT.

● For datarows-locked tables, row lock promotion HWM, row lock promotion LWM, and row lock
promotion PCT.

The abbreviations in these parameters are:

● HWM – high water mark
● LWM – low water mark
● PCT – percent

3.2.3.2 Lock Promotion High Water Mark

page lock promotion HWM and row lock promotion HWM set a maximum number of page or row locks
allowed on a table before SAP ASE attempts to escalate to a table lock. The default value is 200.

When the number of locks acquired during a scan session exceeds this number, SAP ASE attempts to acquire a
table lock.

Setting the high water mark to a value greater than 200 reduces the chance of any task or worker process
acquiring a table lock on a particular table. For example, if a process updates more than 200 rows of a very
large table during a transaction, setting the lock promotion high water mark higher keeps this process from
attempting to acquire a table lock.

Setting the high water mark to less than 200 increases the chances of a particular task or worker process
acquiring a table lock.

3.2.3.3 Lock Promotion Low Water Mark

page lock promotion LWM and row lock promotion LWM set a minimum number of locks allowed on a
table before SAP ASE can acquire a table lock. The default value is 200.

SAP ASE cannot acquire a table lock until the number of locks on a table is equal to the low water mark.

The low water mark must be less than or equal to the corresponding high water mark.

Setting the low water mark to a very high value decreases the chance for a particular task or worker process to
acquire a table lock, which uses more locks for the duration of the transaction, potentially exhausting all
available locks in SAP ASE. The possibility of all locks being exhausted is especially high with queries that
update a large number of rows in a datarows-locked table, or that select large numbers of rows from datarows-
locked tables at isolation levels 2 or 3.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 51

If conflicting locks prevent lock promotion, you may need to increase the value of the number of locks
configuration parameter.

3.2.3.4 Lock Promotion Percent

page lock promotion PCT and row lock promotion PCT set the percentage of locked pages or rows.

This is based on the table size above which SAP ASE attempts to acquire a table lock when the number of locks
is between the lock promotion HWM and the lock promotion LWM.

The default value is 100.

SAP ASE attempts to promote page locks to a table lock or row locks to a table lock when the number of locks
on the table exceeds:

(PCT * number of pages or rows in the table) / 100

Setting lock promotion PCT to a very low value increases the chance of a particular user transaction
acquiring a table lock.

52 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

3.2.3.5 Set Server-wide Lock Promotion Thresholds

Use sp_setpglockpromote or sp_setpglockpromote_ptnto set the server-wide lock promotion
thresholds.

The following command sets the server-wide page lock promotion LWM to 100, the page lock promotion
HWM to 2000, and the page lock promotion PCT to 50 for all datapages-locked and allpages-locked
tables:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to a table lock unless the number of locks on the table is
between 100 and 2000.

If a command requires more than 100 but less than 2000 locks, SAP ASE compares the number of locks to the
percentage of locks on the table.

If the number of locks is greater than the number of pages resulting from the percentage calculation, SAP ASE
attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-locked tables:

sp_setrowlockpromote "server", null, 300, 500, 50

The default values for lock promotion configuration parameters are likely to be appropriate for most
applications.

The sp_setpglockpromote_ptn system procedure sets partition-lock promotion thresholds at the server,
database, and table level.

This example sets the server-wide partition lock promotion threshold values LWM to 200, the HWM to 300, and
the PCT to 50:

sp_setpglockpromote_ptn "server", NULL, 200, 300, 50

The sp_setrowlockpromote_ptn system procedure sets partition-lock promotion thresholds for datarows-
locked partitions at the server, database, and table level. For example:

sp_setrowlockpromote_ptn "server", NULL, 100, 1000, 100

3.2.3.6 Set the Lock Promotion Threshold for a Table or
Database

To configure lock promotion values for an individual table or database, initialize all three lock promotion
thresholds.

For example:

sp_setpglockpromote "table", titles, 100, 2000, 50

sp_setrowlockpromote "table", authors, 300, 500, 50

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 53

sp_setrowlockpromote_ptn "table", "pubs2..titles", 500, 700, 10

After the values are initialized, you can change any individual value. For example, to change the lock
promotion PCT only:

sp_setpglockpromote "table", titles, null, null, 70

sp_setrowlockpromote "table", authors, null, null, 50

sp_setrowlockpromote_ptn "table", "pubs2..titles", null, null, 10

To configure values for a database, use:

sp_setpglockpromote "database", pubs3, 1000, 1100, 45

sp_setrowlockpromote "database", pubs3, 1000, 1100, 45

sp_setrowlockpromote_ptn "database", master, 1000, 1100, 45

3.2.3.7 Precedence of Settings

You can change the lock promotion thresholds for any user database or for an individual table. Settings for an
individual table override the database or server-wide settings; settings for a database override the server-wide
values.

Server-wide values for lock promotion apply to all user tables on the server, unless the database or tables have
lock promotion values configured.

3.2.3.8 Dropping Database and Table Settings

To remove table, partition, or database lock promotion thresholds for table lock promotion, use
sp_dropglockpromote or sp_droprowlockpromote.

Use sp_dropglockpromote_ptn or sp_droprowlockpromote_ptn to remove partition-lock promotion
thresholds.

When you drop a database’s lock promotion thresholds, tables that do not have lock promotion thresholds
configured use the server-wide values. When you drop a table’s lock promotion thresholds, SAP ASE uses the
database’s lock promotion thresholds, if they have been configured, or the server-wide values, if the lock
promotion thresholds have not been configured. You cannot drop server-wide table lock promotion thresholds.

54 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

3.2.3.9 sp_sysmon Usage While Tuning Lock Promotion
Thresholds

Use sp_sysmon to see how many times lock promotions take place and the types of promotions they are.

If there is a problem, look for signs of lock contention in the “Granted” and “Waited” data in the “Lock Detail”
section of sp_sysmon output.

See “Lock promotions” and “Lock detail” in Performance and Tuning Series: Monitoring SAP ASE with
sp_sysmon.

If lock contention is high and lock promotion is frequent, consider changing the lock promotion thresholds for
the tables involved.

3.3 Choosing the Locking Scheme for a Table

In general, choose a lock scheme for a new table based on the likelihood that applications will experience lock
contention on the table.

Context

Whether to change the locking scheme for an existing table can be based on contention measurements on the
table, but should also take application performance into account.

Here are some typical situations and general guidelines for choosing the locking scheme:

● Applications require clustered access to data rows due to range queries or order by clauses. Allpages
locking provides more efficient clustered access than data-only-locking. Rows may not be returned in key
order of the clustered index for queries.

● A large number of applications access 10 to 20% of the data rows, with many update and
selectcommands on the same data.
Use datarows or datapages locking to reduce contention, especially on tables that have the highest
contention.

● The table is a heap table that will have a high rate of inserts.
Use datarows locking to avoid contention. If the number of rows inserted per batch is high, datapages
locking is also acceptable. Allpages locking has more contention for the “last page” of heap tables.

● Applications need to maintain an extremely high transaction rate; contention is likely to be low.
Use allpages locking; less locking and latching overhead yields improved performance.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 55

3.3.1 Analyzing Existing Applications

Analyze existing applications if blocking and deadlock problems are experienced.

Procedure

1. Check for deadlocks and lock contention:

○ Use sp_object_stats to determine the tables where blocking is a problem.
○ Identify the tables involved in the deadlock, either using sp_object_stats or by enabling the print

deadlock information configuration parameter.

2. If the table uses allpages locking and has a clustered index, ensure that performance of the modified
clustered index structure on data-only-locked tables will not hurt performance.

3. If the table uses allpages locking, convert the locking scheme to datapages locking to determine whether
that solves the concurrency problem.

4. Re-run the concurrency tests. If concurrency is still an issue, change the locking scheme to datarows
locking.

Related Information

Tables where Clustered Index Performance Must Remain High [page 58]

3.3.2 Choosing a Locking Scheme Based on Contention
Statistics

If the locking scheme for the table is allpages, the lock statistics reported by sp_object_stats include both
data page and index lock contention.

If lock contention totals 15% or more for all shared, update, and exclusive locks, sp_object_stats
recommends changing to datapages locking. Make the recommended change, and run sp_object_stats
again.

If contention using datapages locking is more than 15%, sp_object_stats recommends changing to
datarows locking. This two-phase approach is based on these characteristics:

● Changing from allpages locking to either data-only-locking scheme is time consuming and expensive, in
terms of I/O cost, but changing between the two data-only-locking schemes is fast and does not require
copying the table.

● Datarows locking requires more locks and consumes more locking overhead.
If your applications experience little contention after you convert high-contending tables to use datapages
locking, you do not need to incur the locking overhead of datarows locking.

56 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

 Note
The number of locks available to all processes on the server is limited by the number of locks
configuration parameter.

Changing to datapages locking reduces the number of locks required, since index pages are no longer
locked.

Changing to datarows locking can increase the number of locks required, since a lock is needed for
each row.

When examining sp_object_stats output, look at tables that are used together in transactions in your
applications. Locking on tables that are used together in queries and transactions can affect the locking
contention of the other tables.

Reducing lock contention on one table could ease lock contention on other tables as well, or it could increase
lock contention on another table that was masked by blocking on the first table in the application. For example:

● Lock contention is high for two tables that are updated in transactions involving several tables.
Applications first lock TableA, then attempt to acquire locks on TableB, and block, holding locks on
TableA.
Additional tasks running the same application block while trying to acquire locks on TableA. Both tables
show high contention and high wait times.
Changing TableB to data-only locking may alleviate the contention on both tables.

● Contention for TableT is high, so its locking scheme is changed to a data-only locking scheme.
Re-running sp_object_stats now shows contention on TableX, which had shown very little lock
contention. The contention on TableX was masked by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of tables to data-only locking gradually,
by changing only those tables with the highest lock contention. Then test the results of these changes by re-
running sp_object_stats.

Run your usual performance monitoring tests both before and after you make the changes.

Related Information

Estimate Number of Locks for Data-only-locked Tables [page 48]

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 57

3.3.3 Monitoring and Managing Tables After Conversion

Manage and monitor your tables after you have converted them in an application to a data-only-locking
scheme.

Context

● Check query plans and I/O statistics, especially for those queries that use clustered indexes.
● Monitor the tables to learn how changing the locking scheme affects:

○ Cluster ratios, especially for tables with clustered indexes
○ The number of forwarded rows in the table

3.3.4 Applications Not Likely to Benefit from Data-only
Locking

Certain tables and application types may get little benefit from converting to data-only locking, or may require
additional management after the conversion.

3.3.4.1 Tables where Clustered Index Performance Must
Remain High

If queries with high performance requirements use clustered indexes to return large numbers of rows in index
order, you may see performance degradation if you change these tables to use data-only locking. Clustered
indexes on data-only-locked tables are structurally the same as nonclustered indexes.

Placement algorithms keep newly inserted rows close to existing rows with adjacent values, as long as space is
available on nearby pages.

Performance for a data-only-locked table with a clustered index should be close to the performance of the
same table with allpages locking immediately after a create clustered index command or a reorg
rebuild command, but performance, especially with large I/O, declines if cluster ratios decline because of
insertion and forwarded rows.

Performance remains high for tables that do not experience many insertions. On tables that get many
insertions, a System Administrator may need to drop and re-create the clustered index or run reorg rebuild
more frequently.

Using space management properties such as fillfactor, exp_row_size, and reservepagegap can help
reduce the frequency of maintenance operations. In some cases, using the allpages-locking scheme for the
table, even if there is some contention, may provide better performance for queries performing clustered index
scans than using data-only locking for the tables.

58 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

3.3.4.2 Tables with Maximum-length Rows

Data-only-locked tables require more overhead per page and per row than allpages-locked tables, so the
maximum row size for a data-only-locked table is slightly shorter than the maximum row size for an allpages-
locked table.

For tables with fixedlength columns only, the maximum row size is 1958 bytes of user data for data-only-
locked tables. Allpages-locked tables allow a maximum of 1960 bytes.

For tables with variable-length columns, subtract 2 bytes for each variable-length column (this includes all
columns that allow null values). For example, the maximum user row size for a data-only-locked table with 4
variable-length columns is 1950 bytes.

If you try to convert an allpages-locked table that has more than 1958 bytes in fixedlength columns, the
command fails as soon as it reads the table schema.

When you try to convert an allpages-locked table with variable-length columns, and some rows exceed the
maximum size for the data-only-locked table, the alter table command fails at the first row that is too long
to convert.

3.4 Optimistic Index Locking

Optimistic index locking can resolve increased contention on some important resources, such as the spinlocks
that guard address locks on the root page of an index partition.

Applications where this amount of contention might occur are typically those in which:

● Access to a specified index constitutes a significant portion of the transaction profile, and many users are
concurrently executing the same workload.

● Different transactions, such as ad hoc and standardized queries, use the same index concurrently.

Optimistic index locking does not acquire an address lock on the root page of an index partition during normal
data manipulation language (DML) operations. If your updates and insertions can cause modifications to the
root page of the accessed index partition, optimistic index locking restarts the search and acquires an exclusive
table lock, not an address lock.

Two stored procedures are changed by optimistic index locking:

● sp_chgattribute enables or disables optimistic index locking; when enabled, setting an exclusive table
lock on the table you specify.

● sp_help includes a column that displays optimistic index lock.

See Reference Manual: Procedures.

Performance and Tuning Series: Locking and Concurrency Control
Locking Configuration and Tuning P U B L I C 59

3.4.1 Using Optimistic Index Locking

Use optimistic index locking when certain conditions are met.

Context

● There is significant contention on the lock address hash bucket spinlock.
● None of the indexes on this table cause modifications to the root page.
● The number of index levels is high enough to cause no splitting or shrinking of the root page.
● There are large numbers of concurrent accesses to read-only tables on heavily trafficked index pages.
● A database is read-only.

3.4.2 Cautions and Issues

Since an exclusive table lock blocks all access by other tasks to the entire table, you must thoroughly
understand the user access patterns of your application before enabling optimistic index locking.

The following circumstances require an exclusive table lock:

● Adding a new level to the root page
● Shrinking the root page
● Splitting or shrinking the immediate child of the root page, causing an update on the root page

Do not use optimistic index locking when:

● You have small tables (that are not read-only) with index levels no higher than 3.
● You envision possible modifications to the root page of an index

 Note
An exclusive table lock is an expensive operation, since it blocks access to the entire table. Use extreme
caution in setting the optimistic index locking property.

60 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Locking Configuration and Tuning

4 Lock Tools

sp_who, sp_lock, and sp_familylock report on locks held by users and show processes that are blocked by
other transactions.

4.1 Information About Blocked Processes

sp_who reports on system processes. If a user’s command is being blocked by locks held by another task or
worker process, the status column shows “lock sleep” to indicate that this task or worker process is waiting
for an existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the task or transaction holding the lock or
locks.

You can add a user name parameter to get sp_who information about a particular SAP ASE user. If you do not
provide a user name, sp_who reports on all processes in SAP ASE.

For example, consider what happens if you run three sessions in the pubs2 database: session one deletes the
authors table, session two selects all the data from the authors table, and the third session running sp_who
against spid 15. In this situation, session two hangs, and session three reports this in the sp_who output:

sp_who '15'

 fid spid status loginame origname hostname blk_spid dbname
 tempdbname cmd block_xloid threadpool
--- ---- -------- -------- --------- -------- -------- ------
 ---------- ---------------- ---------- --------------
0 15 recv sleep sa sa PSALDINGXP 0 pubs2 tempdb AWAITING COMMAND 0 syb_default_pool

If you run sp_who against spid 16:

sp_who '16'

 fid spid status loginame origname hostname blk_spid dbname
 tempdbname cmd block_xloid threadpool
--- ---- ---------- --------- --------- ---------- -------- ------
 ---------- ---------------- ----------- ----------------
0 16 lock sleep sa sa PSALDINGXP 15 pubs2 tempdb SELECT 0 syb_default_pool

If you run sp_lock against spid 15, the class column displays the cursor name for locks associated with the
current user’s cursor and the cursor ID for other users:

 fid spid loid locktype table_id page
 row dbname class context
--- ---- ----- -------------- --------- -----
 ----- ---------- -------------- ---------------
0 15 30 Ex_intent 576002052 0

Performance and Tuning Series: Locking and Concurrency Control
Lock Tools P U B L I C 61

 0 pubs2 Non Cursor Lock
0 15 30 Ex_page-blk 576002052 1008
 0 pubs2 Non Cursor Lock
0 15 30 Ex_page 576002052 1040 0 pubs2 Non Cursor Lock Ind pg

If you run sp_lock against spid 16, the class column displays the cursor name for locks associated with the
current user’s cursor and the cursor ID for other users:

 fid spid loid locktype table_id page
 row dbname class context
--- ---- ---- ----------- -------- ----
 ----- ----------- ----------- ----------
0 16 32 Sh_intent 576002052 0 0 pubs2 Non Cursor Lock

 Note
The sample output for sp_lock and sp_familylock in this chapter omits the class column to increase
readability. The class column reports either the names of cursors that hold locks or “Non Cursor Lock.”

4.2 View Locks with sp_lock

Use sp_lock to get a report on the locks currently being held on SAP ASE.

The syntax is:

sp_lock

fid spid loid locktype table_id page row dbname context --- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 0 15 30 Ex_intent 208003772 0 0 sales Fam dur
 0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
 0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
 0 15 30 Ex_page-blk 208003772 946 0 sales Fam dur
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg
 0 35 70 Sh_intent 16003088 0 0 sales Fam dur
 0 35 70 Sh_page 16003088 1096 0 sales Fam dur, Inf key
 0 35 70 Sh_page 16003088 3102 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3113 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3365 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3604 0 sales Fam dur, Range
 0 49 98 Sh_intent 464004684 0 0 master Fam dur
 0 50 100 Ex_intent 176003658 0 0 stock Fam dur
 0 50 100 Ex_row 176003658 36773 8 stock Fam dur
 0 50 100 Ex_intent 208003772 0 0 stock Fam dur
 0 50 100 Ex_row 208003772 70483 1 stock Fam dur
 0 50 100 Ex_row 208003772 70483 2 stock Fam dur
 0 50 100 Ex_row 208003772 70483 3 stock Fam dur
 0 50 100 Ex_row 208003772 70483 5 stock Fam dur
 0 50 100 Ex_row 208003772 70483 8 stock Fam dur
 0 50 100 Ex_row 208003772 70483 9 stock Fam dur
 32 13 64 Sh_page 240003886 17264 0 stock
 32 16 64 Sh_page 240003886 4376 0 stock

62 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Tools

 32 17 64 Sh_page 240003886 7207 0 stock
 32 18 64 Sh_page 240003886 12766 0 stock
 32 18 64 Sh_page 240003886 12767 0 stock
 32 18 64 Sh_page 240003886 12808 0 stock
 32 19 64 Sh_page 240003886 22367 0 stock
 32 32 64 Sh_intent 16003088 0 0 stock Fam dur
 32 32 64 Sh_intent 48003202 0 0 stock Fam dur
 32 32 64 Sh_intent 80003316 0 0 stock Fam dur
 32 32 64 Sh_intent 112003430 0 0 stock Fam dur
 32 32 64 Sh_intent 176003658 0 0 stock Fam dur
 32 32 64 Sh_intent 208003772 0 0 stock Fam dur 32 32 64 Sh_intent 240003886 0 0 stock Fam dur

This example shows the lock status of serial processes and one parallel process:

● spid 15 holds an exclusive intent lock on a table, one data page lock, and two index page locks. A “blk”
suffix indicates that this process is blocking another process that needs to acquire a lock; spid 15 is
blocking another process. As soon as the blocking process completes, the other processes move forward.

● spid 30 holds an exclusive intent lock on a table, one lock on a data page, and two locks on index pages.
● spid 35 is performing a range query at isolation level 3. It holds range locks on several pages and an

infinity key lock.
● spid 49 is the task that ran sp_lock; it holds a shared intent lock on the spt_values table in master

while it runs.
● spid 50 holds intent locks on two tables, and several row locks.
● fid 32 shows several spids holding locks: the parent process (spid 32) holds shared intent locks on 7

tables, while the worker processes hold shared page locks on one of the tables.

The lock type column indicates not only whether the lock is a shared lock (“Sh” prefix), an exclusive lock
(“Ex” prefix), or an “Update” lock, but also whether it is held on a table (“table” or “intent”) or on a “page” or
“row.”

A “demand” suffix indicates that the process will acquire an exclusive lock as soon as all current shared locks
are released.

The context column consists of one or more of the following values:

● “Fam dur” means that the task will hold the lock until the query completes, that is, for the duration of the
family of worker processes. Shared intent locks are an example of family duration locks.
For a parallel query, the coordinating process always acquires a shared intent table lock that is held for the
duration of the parallel query. If the parallel query is part of a transaction, and earlier statements in the
transaction performed data modifications, the coordinating process holds family duration locks on all the
changed data pages.
Worker processes can hold family duration locks when the query operates at isolation level 3.

● “Ind pg” indicates locks on index pages (allpages-locked tables only).
● “Inf key” indicates an infinity key lock, used on data-only-locked tables for some range queries at

transaction isolation level 3.
● “Range” indicates a range lock, used for some range queries at transaction isolation level 3.

This example displays locks, including partition locks in the <partitionid> column, currently held by SAP
ASE.

sp_lock go
fid spid loid locktype table_id partitionid page row dbname context
--- ---- ---- ---------------- --------- ----------- ----- --- ------

Performance and Tuning Series: Locking and Concurrency Control
Lock Tools P U B L I C 63

 0 13 26 Ex_intent 420193516 0 0 0 master Non
Cursor Lock
 0 13 26 Ex_intent_partition 420193516 452193630 0 0 master Non
Cursor Lock
 0 13 26 Ex_page 420193516 452193630 4993 0 master Non
Cursor Lock
 0 14 28 Ex_intent 420193516 0 0 0 master Non
Cursor Lock
 0 14 28 Ex_intent_partition 420193516 468193687 0 0 master Non
Cursor Lock
 0 14 28 Ex_page 420193516 468193687 5001 0 master Non
Cursor Lock
 0 16 32 Sh_intent 1006623598 0 0 0 master Non
Cursor Lock

To see lock information about a particular login, give the spid for the process:

sp_lock 30

 fid spid loid locktype table_id page row dbname context
---- ---- ----- --------- ---------- ----- ----- ---------- ---------
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind
pg 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind
pg

If the spid you specify is also the fid for a family of processes, sp_who prints information for all of the
processes.

You can also request information about locks on multiple spids:

sp_lock 30, 15

 fid spid loid locktype table_id page row dbname context
---- ---- ----- --------- ---------- ----- ----- --------- ---------
 0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
 0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
 0 15 30 Ex_page-blk 208003772 946 0 sales Fam dur
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg

4.3 View Locks with sp_familylock

sp_familylock displays the locks held by a family.

This example shows that the coordinating process (fid 51, spid 51) holds a shared intent lock on each of four
tables and a worker process holds a shared page lock:

sp_familylock 51

fid spid loid locktype table_id page row dbname class context ---- ----- ----- --------- -------- ---- ---- ------ ------- ------

64 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Tools

 51 23 102 Sh_page 208003772 945 0 sales
 51 51 102 Sh_intent 48003202 0 0 sales Fam dur
 51 51 102 Sh_intent 176003658 0 0 sales Fam dur 51 102 Sh_intent 208003772 0 0 sales Fam dur

You can also specify two IDs for sp_familylock.

You can also view locked partitions in the sp_familylock report.

This example displays the partition locks currently held by a family. The class column displays the cursor name
for locks associated with a cursor for the current user and the cursor id for other users.

sp_familylock go
Fid spid loid locktype table_id partitionid page dbname
class context
--- ---- ---- --------------------- -------- ----------- ---- ------
--------------- -------
25 19 50 Sh_cpartition 672002394 -1 0 userdb Non Cursor
Lock Fam dur
25 19 50 Sh_partition 672002394 688002451 0 userdb Non Cursor
Lock Fam dur
25 20 50 Sh_cpartition 672002394 -1 0 userdb Non Cursor
Lock Fam dur
25 20 50 Sh_intent_partition 672002394 688002451 0 userdb Non Cursor
Lock Fam dur
25 20 50 Sh_partition 672002394 704002508 0 userdb Non Cursor
Lock Fam dur
25 25 50 Sh_intent 672002394 0 0 userdb Non Cursor
Lock Fam dur
(6 rows affected) (return status = 0)

4.4 Intrafamily Blocking During Network Buffer Merges

When many worker processes are returning query results, you may see blocking between worker processes.

This example shows five worker processes blocking on the sixth worker process:

sp_who 11

 fid spid status loginame origname hostname blk_spid dbname
 tempdbname cmd block_xloid threadpool
--- ---- --------- --------- --------- --------------- -------- ------
 ---------- ------------ ----------- -----------------
11 11 sleeping diana diana olympus 0 sales
 tempdb SELECT 0 syb_default_pool
11 16 lock sleep diana diana olympus 18 sales
 tempdb WORKER PROCESS 0 syb_default_pool
11 17 lock sleep diana diana olympus 18 sales
 tempdb WORKER PROCESS 0 syb_default_pool
11 18 send sleep diana diana olympus 0 sales
 tempdb WORKER PROCESS 0 syb_default_pool
11 19 lock sleep diana diana olympus 18 sales
 tempdb WORKER PROCESS 0 syb_default_pool
11 20 lock sleep diana diana olympus 18 sales
 tempdb WORKER PROCESS 0 syb_default_pool
11 21 lock sleep diana diana olympus 18 sales tempdb WORKER PROCESS 0 syb_default_pool

Performance and Tuning Series: Locking and Concurrency Control
Lock Tools P U B L I C 65

Each worker process acquires an exclusive address lock on the network buffer while writing results to it. When
the buffer is full, it is sent to the client, and the lock is held until the network write completes.

4.5 Monitor Lock Timeouts

SAP ASE includes information for tracking locks.

● The monLockTimeout monitoring table provides information about lock requests that are denied because
they are blocked for more than the value configured for lock wait period. See Reference Manual:
Tables > Monitoring Tables.

● These configuration parameters configure SAP ASE to collect lock wait timeout information and make it
available for the monLockTimeout table:
○ lock timeout pipe active
○ lock timeout pipe max messages

See Reference Manual: Configuration Parameters.

66 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Tools

5 Deadlocks and Concurrency

A deadlock occurs when two user processes each have a lock on a separate data page, index page, partition,
row, or table and each wants to acquire a lock on the page, row, partition, or table locked by the other process.

When this happens, the first process is waiting for the second to release the lock, but the second process will
not release it until the lock held by the first process is released.

5.1 Server-side Versus Application-side Deadlocks

When tasks deadlock in SAP ASE, a deadlock detection mechanism rolls back one of the transactions, and
sends messages to the user and to the SAP ASE error log.

Sometimes application-side deadlock situations arise in which a client opens multiple connections, and these
client connections wait for locks held by the other connection of the same application. These are not true
server-side deadlocks and cannot be detected by SAP ASE deadlock detection mechanisms.

5.1.1 Application Deadlock Example

An example showing when deadlocks can occur.

Some developers simulate cursors by using two or more connections from DB-Library™. One connection
performs a select and the other connection performs updates or deletions on the same tables. This can
create application deadlocks. For example:

● Connection A holds a shared lock on a page. As long as there are rows pending from SAP ASE, a shared
lock is kept on the current page.

● Connection B requests an exclusive lock on the same pages and then waits.
● The application waits for Connection B to succeed before invoking the logic needed to remove the shared

lock. But this never happens.

Since Connection A never requests a lock that is held by Connection B, this is not a server-side deadlock.

Performance and Tuning Series: Locking and Concurrency Control
Deadlocks and Concurrency P U B L I C 67

5.2 Server Task Deadlocks

An example showing a deadlock between two processes.

T19 Event sequence T20

begin transaction update savings
set balance = balance - 250
where acct_number = 25
update checking
set balance = balance + 250
where acct_number = 45 commit transaction

T19 and T20 start. T19
gets exclusive lock on
savings while T20 gets ex
clusive lock on checking.
T19 waits for T20 to re
lease its lock while T20
waits for T19 to release its
lock; deadlock occurs.

begin transaction

update checking set balance = balance - 75 where acct_number = 45

update savings set balance = balance + 75
where acct_number = 25 commit transaction

If transactions T19 and T20 execute simultaneously, and both transactions acquire exclusive locks with their
initial update statements, they deadlock, waiting for each other to release their locks, which will not happen.

SAP ASE checks for deadlocks and chooses the user whose transaction has accumulated the least amount of
CPU time as the victim.

SAP ASE rolls back that user’s transaction, notifies the application program of this action with message
number 1205, and allows the other process to move forward.

The example above shows two data modification statements that deadlock; deadlocks can also occur between
a process holding and needing shared locks, and one holding and needing exclusive locks.

In a multiuser situation, each application program should check every transaction that modifies data for
message 1205 if there is any chance of deadlocking. Message 1205 indicates that a user transaction has been
selected as the victim of a deadlock and rolled back. The application program must restart that transaction.

5.3 Deadlocks and Parallel Queries

Worker processes can acquire only shared locks, but they can still be involved in deadlocks with processes that
acquire exclusive locks.

The locks they hold meet one or more of these conditions:

● A coordinating process holds a table lock as part of a parallel query.
The coordinating process could hold exclusive locks on other tables as part of a previous query in a
transaction.

● A parallel query is running at transaction isolation level 3 or using holdlock and holds locks.
● A parallel query is joining two or more tables while another process is performing a sequence of updates to

the same tables within a transaction.

68 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Deadlocks and Concurrency

A single worker process can be involved in a deadlock such as those that occur between two serial processes.
For example, a worker process that is performing a join between two tables can deadlock with a serial process
that is updating the same two tables.

In some cases, deadlocks between serial processes and families involve a level of indirection.

For example, if a task holds an exclusive lock on tableA and needs a lock on tableB, but a worker process
holds a family-duration lock on tableB, the task must wait until the transaction that the worker process is
involved in completes.

If another worker process in the same family needs a lock on tableA, the result is a deadlock.

● The family identified by fid 8 is doing a parallel query that involves a join of stock_tbl and sales_tbl,
at transaction level 3.

● The serial task identified by spid 17 (T17) is performing inserts to stock_tbl and sales_tbl in a
transaction.

These are the steps that lead to the deadlock:

● W8 9, a worker process with a fid of 8 and a spid of 9, holds a shared lock on page 10862 of stock_tbl.
● T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an exclusive lock on page 10862, which

it cannot acquire until W8 9 releases its shared lock.
● The worker process W8 10 needs a shared lock on page 634, which it cannot acquire until T17 releases its

exclusive lock.

Performance and Tuning Series: Locking and Concurrency Control
Deadlocks and Concurrency P U B L I C 69

5.4 Print Deadlock Information to the Error Log

SAP ASE detects server-side deadlocks to the application and reports them in the server’s error log. The error
message sent to the application is error 1205.

To get information about the tasks that deadlock, set the print deadlock information configuration
parameter to 1. This setting sends more detailed deadlock messages to the log and to the terminal session
where the server started.

The message sent to the error log, by default, merely identifies that a deadlock occurred. The numbering in the
message indicates the number of deadlocks since the last boot of the server.

03:00000:00029:1999/03/15 13:16:38.19 server Deadlock Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so its fid and spid values are used as the
second and third values in the deadlock message. (The first value, 03, is the engine number.)

However, setting print deadlock information to 1 can degrade SAP ASE performance. For this reason,
use it only to determine the cause of deadlocks.

Disabling print deadlock information (setting it to 0) means that SAP ASE does not send any
information about deadlocks to the error log.

The deadlock messages contain detailed information, including:

● The family and server-process IDs of the tasks involved
● The commands and tables involved in deadlocks; if a stored procedure was involved, the procedure name

is shown
● The type of locks each task held, and the type of lock each task was trying to acquire
● The server login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, spid 38. The deadlock involves
exclusive versus shared lock requests on the authors table. spid 29 is chosen as the deadlock victim:

Deadlock Id 11: detected. 1 deadlock chain(s) involved. Deadlock Id 11: Process (Familyid 94, 38) (suid 62) was executing a SELECT
command at line 1. SQL Text select * from authors where au_id like '172%'
Deadlock Id 11: Process (Familyid 29, 29) (suid 56) was executing a INSERT
command at line 1
SQL Text: insert authors (au_id, au_fname, au_lname) values
(’A999999816’, ’Bill’, ’Dewart’)
Deadlock Id 11: Process (Familyid 0, Spid 29) was waiting for a ’exclusive page’
lock on page 1155 of the ’authors’ table in database 8 but process (Familyid 94,
Spid 38) already held a ’shared page’ lock on it.
Deadlock Id 11: Process (Familyid 94, Spid 38) was waiting for a ’shared page’
lock on page 2336 of the ’authors’ table in database 8 but process (Familyid 29,
Spid 29) already held a ’exclusive page’ lock on it. Deadlock Id 11: Process (Familyid 0, 29) was chosen as the victim. End of
deadlock information.

70 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Deadlocks and Concurrency

5.5 Deadlock Avoidance

Deadlocks may occur when many long-running transactions are executed at the same time in the same
database. Deadlocks become more common as lock contention increases between transactions, which
decreases concurrency.

5.5.1 Lock Acquisition on Objects in the Same Order

Well-designed applications can minimize deadlocks by always acquiring locks in the same order. Updates to
multiple tables should always be performed in the same order.

In applications with large numbers of tables and transactions that update several tables, establish a locking
order that can be shared by all application developers.

5.5.2 Delay Deadlock Checking

SAP ASE performs deadlock checking after a minimum period of time for any process waiting for a lock to be
released (sleeping). Deadlock checking is time-consuming overhead for applications that wait without a
deadlock.

If your applications deadlock infrequently, SAP ASE can delay deadlock checking and reduce the overhead
cost. Use the deadlock checking period configuration parameter to specify the minimum amount of time
(in milliseconds) that a process waits before it initiates a deadlock check.

Valid values are 0 – 2147483. The default value is 500. deadlock checking period is a dynamic
configuration value, so any change to it takes immediate effect.

If you set the value to 0, SAP ASE initiates deadlock checking when the process begins to wait for a lock. If you
set the value to 600, SAP ASE initiates a deadlock check for the waiting process after at least 600 ms. For
example:

sp_configure "deadlock checking period", 600

Setting deadlock checking period to a higher value produces longer delays before deadlocks are
detected. However, since SAP ASE grants most lock requests before this time elapses, the deadlock checking
overhead is avoided for those lock requests.

SAP ASE performs deadlock checking for all processes at fixed intervals, determined by deadlock checking
period. If SAP ASE performs a deadlock check while a process’s deadlock checking is delayed, the process
waits until the next interval.

Therefore, a process may wait from the number of milliseconds set by deadlock checking period to
almost twice that value before deadlock checking is performed. sp_sysmon can help you tune deadlock
checking behavior.

See Performance and Tuning Series: Monitoring SAP ASE with sp_sysmon > Deadlock Detection.

Performance and Tuning Series: Locking and Concurrency Control
Deadlocks and Concurrency P U B L I C 71

5.6 Identify Tables Where Concurrency is a Problem

sp_object_stats prints table-level information about lock contention.

Use it to:

● Report on tables that have the highest contention level
● Report contention on tables in a single database
● Report contention on individual tables

The syntax is:

sp_object_stats <interval >[, <top_n >[, <dbname >[, <objname >[,
<rpt_option>]]]]

To measure lock contention on all tables in all databases, specify only the interval. This example monitors lock
contention for 20 minutes, and reports statistics on the 10 tables with the highest levels of contention:

sp_object_stats "00:20:00"

Additional arguments to sp_object_stats are as follows:

● <top_n> – allows you to specify the number of tables to be included in the report. The default is 10. To
report on the top 20 high-contention tables, for example, use:

sp_object_stats "00:20:00", 20

● <dbname> – prints statistics for the specified database.
● <objname> – measures contention for the specified table.
● <rpt_option >– specifies the report type:

○ rpt_locks reports grants, waits, deadlocks, and wait times for the tables with the highest
contention. rpt_locks is the default.

○ rpt_objlist reports only the names of the objects with the highest level of lock activity.

Here is sample output for titles, which uses datapages locking:

Object Name: pubtune..titles (dbid=7, objid=208003772,lockscheme=Datapages) Page Locks SH_PAGE UP_PAGE EX_PAGE
 ---------- ---------- ---------- ----------
 Grants: 94488 4052 4828
 Waits: 532 500 776
 Deadlocks: 4 0 24
 Wait-time: 20603764 ms 14265708 ms 2831556 ms
 Contention: 0.56% 10.98% 13.79% *** Consider altering pubtune..titles to Datarows locking.

Table 8: sp_object_stats Output

Output row Value

Grants The number of times the lock was granted immediately

Waits The number of times the task needing a lock had to wait

72 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Deadlocks and Concurrency

Output row Value

Deadlocks The number of deadlocks that occurred

Wait-time The total number of milliseconds that all tasks spent waiting for a lock

Contention The percentage of times that a task had to wait or encountered a deadlock

sp_object_stats recommends changing the locking scheme when total contention on a table is more than
15 percent, as follows:

● If the table uses allpages locking, it recommends changing to datapages locking.
● If the table uses datapages locking, it recommends changing to datarows locking.

5.7 Lock Management Reporting

Output from sp_sysmon provides statistics on locking and deadlocks discussed in this chapter.

Use the statistics to determine whether the SAP ASE system is experiencing performance problems due to
lock contention.

For more information about sp_sysmon and lock statistics, see “Lock management” in Performance and
Tuning Series: Monitoring SAP ASE with sp_sysmon.

Use the monitoring tables to pinpoint locking problems. See the Performance and Tuning Series: Monitoring
Tables.

Performance and Tuning Series: Locking and Concurrency Control
Deadlocks and Concurrency P U B L I C 73

6 Lock Commands

Certain SAP ASE commands affect locking.

6.1 Specify the Locking Scheme for a Table

The locking schemes in SAP ASE provide the flexibility to choose the best locking scheme for each table in an
application and to adapt the locking scheme for a table if contention or performance requires a change.

The tools for specifying locking schemes are:

● sp_configure – specifies a server-wide default locking scheme
● create table – specifies the locking scheme for newly created tables
● alter table – changes the locking scheme for a table to any other locking scheme
● select into – specifies the locking scheme for a table created by selecting results from other tables

6.1.1 Specify a Server-Wide Locking Scheme

The lock scheme configuration parameter sets the locking scheme to be used for any new table, if the
create table command does not specify the lock scheme.

To see the current locking scheme, use:

sp_configure "lock scheme"

 Parameter Name Default Memory Used Config Value Run Value Unit Type
-------------- ------- ----------- ------------ --------- ---- ------ lock scheme allpages 0 datarows datarows name dynamic

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0, {allpages | datapages | datarows}

This command sets the default lock scheme for the server to data pages:

sp_configure "lock scheme", 0, datapages

When you first install SAP ASE, lock scheme is set to allpages.

74 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

6.1.2 Specify a Locking Scheme with Create Table
Use create table to specify the locking scheme for a new table. The syntax is:

create table <table_name> (<column_name_list>) [lock {datarows | datapages | allpages}]

If you do not specify the lock scheme for a table, the default value for the server is used, as determined by the
setting of the lock scheme configuration parameter.

This command specifies datarows locking for the new_publishers table:

create table new_publishers (pub_id char(4) not null,
 pub_name varchar(40) null,
 city varchar(20) null,
 state char(2) null) lock datarows

Specifying the locking scheme with create table overrides the default server-wide setting.

6.1.3 Changing a Locking Scheme with alter table
Use alter table to change the locking scheme for a table. The syntax is:

alter table <table_name> lock {allpages | datapages | datarows}

This command changes the locking scheme for the titles table to datarows locking:

alter table titles lock datarows

alter table supports changing from one locking scheme to any other locking scheme. Changing from
allpages locking to data-only locking requires SAP ASE to copy the data rows to new pages and re-create any
indexes on the table.

Changing the locking scheme requires SAP ASE to perform several steps internally, and requires sufficient
space to make the copy of the table and indexes. The time required depends on the size of the table and the
number of indexes.

If you are changing from datapages locking to datarows locking or vice versa, SAP ASE need not copy data
pages and rebuild indexes. Switching between data-only locking schemes updates only system tables, and
finishes quickly.

 Note
You cannot use data-only locking on tables that have rows that are at, or near, the maximum length of 1962
(including the two bytes for the offset table).

For data-only-locked tables with only fixedlength columns, the maximum user data row size is 1960 bytes
(including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each column that is variable-length (this
includes columns that allow nulls.)

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 75

See “Determining Sizes of Tables and Indexes” in Performance and Tuning Series: Physical Database Tuning
for information on rows and row overhead.

6.1.4 Before and After Changing Locking Schemes

Before you change from allpages locking to data-only locking or vice versa, you should take certain steps.

Context

● If the table is partitioned, and you have not run update statistics since making major data
modifications to the table, run update statistics on the table that you plan to alter. alter
table...lock performs better with accurate statistics for partitioned tables.
Changing the locking scheme does not affect the distribution of data on partitions; rows in partition 1 are
copied to partition 1 in the copy of the table.

● Perform a database dump.
● Set any space management properties that should be applied to the copy of the table or its rebuilt indexes.

See “Setting Space Management Properties” in Performance and Tuning Series: Physical Database Tuning
for information on rows and row overhead.

● Determine if there is enough space. See “Determining the space available for maintenance activities” in
Performance and Tuning Series: Physical Database Tuning .

● If any of the tables in the database are partitioned and require a parallel sort:
○ Use sp_dboption to set the database option select into/bulkcopy/pllsort to true.
○ Configure for optimum parallel sort performance.

After alter table completes:

● Run dbcc checktable on the table and dbcc checkalloc on the database to ensure database
consistency.

● Perform a database dump.

 Note
After you have changed the locking scheme from allpages locking to data-only locking or vice versa,
you cannot use dump transaction to back up the transaction log.

You must first perform a full database dump.

76 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

6.1.5 Expense of Switching To or From Allpages Locking

Switching from allpages locking to data-only locking or vice versa is an expensive operation in terms of I/O
cost. Most of the cost comes from the I/O required to copy the tables and re-create the indexes. Some logging
is also required.

When moving from allpages to data-only locking or from data-only to allpages locking, alter table ...
lock:

1. Copies all rows in the table to new data pages, formatting rows according to the new format. If you are
changing to data-only locking, any data rows of fewer than 10 bytes are padded to 10 bytes during this step.
If you are changing to allpages locking from data-only locking, padding is stripped from rows of fewer than
10 bytes.

2. Drops and re-creates all indexes on the table.
3. Deletes the old set of table pages.
4. Updates the system tables to indicate the new locking scheme.
5. Updates a counter maintained for the table, to cause the recompilation of query plans.

If a clustered index exists on the table, rows are copied in clustered index key order onto the new data pages. If
no clustered index exists, the rows are copied in page-chain order for an allpages-locking to data-only-locking
conversion.

The entire alter table...lock command is performed as a single transaction to ensure recoverability. An
exclusive table lock is held on the table for the duration of the transaction.

6.1.6 Sort Performance During alter table

During alter table, indexes are re-created one at a time. If your system has enough engines, data cache,
and I/O throughput to handle simultaneous create index operations, you can reduce the overall time
required to change locking schemes.

Do this by:

● Dropping the nonclustered indexes
● Altering the locking scheme
● Configuring for best parallel sort performance
● Re-creating two or more nonclustered indexes at once

6.1.7 Specify a Locking Scheme with select into

You can specify a locking scheme when you create a new table using select into. The syntax is:

select [all | distinct] <select_list> into [[<database>.]<owner>.]<table_name> lock {datarows | datapages | allpages} from...

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 77

If you do not specify a locking scheme with select into, the new table uses the server-wide default locking
scheme, as defined by the configuration parameter lock scheme.

This command specifies datarows locking for the table it creates:

select title_id, title, price into bus_titles
lock datarows
from titles where type = "business"

Temporary tables created with the #tablename form of naming are single-user tables, so lock contention is
not an issue. For temporary tables that can be shared among multiple users, that is, tables created with
tempdb..tablename, any locking scheme can be used.

6.2 Control Isolation Levels

You can set the transaction isolation level used by select commands

● For all queries in the session, with the set transaction isolation level command
● For an individual query, with the at isolation clause
● For specific tables in a query, with the holdlock, noholdlock, and shared keywords

When choosing locking levels in your applications, use the minimum locking level consistent with your business
model. The combination of setting the session level while providing control over locking behavior at the query
level allows concurrent transactions to achieve required results with the least blocking.

 Note
If you use transaction isolation level 2 (repeatable reads) on allpages-locked tables, isolation level 3
(serializing reads) is also enforced.

6.2.1 Set Isolation Levels for a Session

The SQL standard specifies a default isolation level of 3. To enforce this level, Transact-SQL provides the set
transaction isolation level command.

For example, you can make level 3 the default isolation level for your session using:

set transaction isolation level 3

If the session has enforced isolation level 3, you can make the query operate at level 1 using noholdlock, as
described below.

If you are using the SAP ASE default isolation level of 1, or if you have used the set transaction isolation
level command to specify level 0 or 2, you can enforce level 3 by using the holdlock option to hold shared
locks until the end of a transaction.

You can display the current isolation level for a session with the global variable <@@isolation.>

78 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

6.2.2 Syntax for Query-level and Table-level Locking Options

You can specify the holdlock, noholdlock, and shared options for each table in a select or readtext
statement, with the at isolation clause applied to the entire query.

select <select_list > from table_name [holdlock | noholdlock] [shared]
 [, table_name [[holdlock | noholdlock] [shared] {<where/group by/order by/compute clauses>} [at isolation {
 [read uncommitted | 0] |
 [read committed | 1] |
 [repeatable read | 2]| [serializable | 3]]

Here is the syntax for the readtext command:

readtext [[<database>.]<owner>.]<table_name>.<column_name text_pointer>
offset size [holdlock | noholdlock] [readpast]
 [using {bytes | chars | characters}]
 [at isolation {
 [read uncommitted | 0] |
 [read committed | 1] |
 [repeatable read | 2]| [serializable | 3]}]

6.2.3 holdlock, noholdlock, or shared Usage

You can override a session’s locking level by applying the holdlock, noholdlock, and shared options to
individual tables in select or readtext commands:

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the transaction; use from level
3 to enforce level 1.

2, 3 holdlock Hold shared locks until the transaction completes; use from
level 1 to enforce level 3.

N/A shared Applies shared rather than update locks for select state
ments in cursors open for update.

These keywords affect locking for the transaction: if you use holdlock, all locks are held until the end of the
transaction.

If you specify holdlock in a query while isolation level 0 is in effect for the session, SAP ASE issues a warning
and ignores the holdlock clause, not acquiring locks as the query executes.

If you specify holdlock and read uncommitted, SAP ASE prints an error message, and the query is not
executed.

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 79

6.2.4 at isolation Clause Usage

You can change the isolation level for all tables in the query by using the at isolation clause with a select
or readtext command. The options in the at isolation clause are:

Level to Use Option Effect

0 read uncommitted Reads uncommitted changes; use from level 1, 2, or 3 queries
to perform dirty reads (level 0).

1 read committed Reads only committed changes; wait for locks to be released;
use from level 0 to read only committed changes, but without
holding locks.

2 repeatable read Holds shared locks until the transaction completes; use from
level 0 or level 1 queries to enforce level 2.

3 serializable Holds shared locks until the transaction completes; use from
level 1 or level 2 queries to enforce level 3.

Multiversion concurrency control adds these isolation level:

Level to Use Option Effect

11 statement snapshot Scans see a snapshot of committed rows at the start of the
statement.

For example, if row r1 of table t1 has a value of 1 at the start
of the statement and this row is updated to a value of 2 while
the statement is running, the statement still sees a value of 1.
The statement effectively sees the state of the database when
the statement starts.

12 transaction
snapshot

Scans in the transaction read data that was committed at the
time the transaction started. Transactions see a snapshot of
the database at the time the transaction started. Any concur
rent updates are not seen by the transaction at this isolation
level.

13 readonly statement
snapshot

Selects see a snapshot of committed rows at the start of the
statement (similar to statement snapshot, but only for se
lects).

Selects use snapshot isolation and read snapshot when they
start. DMLs do not use snapshot isolation, but use traditional
isolation levels instead.

In this example, the following statement queries the titles table at isolation level 0:

select * from titles at isolation read uncommitted

80 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

6.2.5 Making Locks More Restrictive

If isolation level 1 is sufficient for most work, but some queries require higher levels of isolation, you can
selectively enforce the higher isolation level using clauses in the select statement.

Context

● Use repeatable read to enforce level 2
● Use holdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page, row, or table lock more restrictive. holdlock applies:

● To shared locks
● To the table or view for which it is specified
● For the duration of the statement or transaction containing the statement

The at isolation clause applies to all tables in the from clause, and is applied only for the duration of the
transaction. The locks are released when the transaction completes.

In a transaction, holdlock instructs SAP ASE to hold shared locks until the completion of that transaction
instead of releasing the lock as soon as the required table, view, row, or data page is no longer needed. SAP ASE
always holds exclusive locks until the end of a transaction.

The use of holdlock in the following example ensures that the two queries return consistent results:

begin transaction

select branch, sum(balance) from account holdlock group by branch

select sum(balance) from account

commit transaction

The first query acquires a shared table lock on account so that no other transaction can update the data
before the second query runs. This lock is not released until the transaction including the holdlock command
completes.

If the session isolation level is 0, and only committed changes must be read from the database, you can use the
at isolation level read committed clause.

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 81

6.2.6 Making Locks Less Restrictive

In contrast to holdlock, the noholdlock keyword prevents SAP ASE from holding any shared locks acquired
during the execution of the query, regardless of the transaction isolation level currently in effect.

Context

noholdlock is useful in situations where transactions require a default isolation level of 2 or 3. If any queries in
those transactions do not need to hold shared locks until the end of the transaction, you can improve
concurrency by specifying noholdlock with those queries.

For example, if the transaction isolation level is set to 3, which normally causes a select query to hold locks
until the end of the transaction, this command releases the locks when the scan moves off the page or row:

select balance from account noholdlock where acct_number < 100

If the session isolation level is 1, 2, or 3, and you want to perform dirty reads, you can use the at isolation
level read uncommitted clause.

The shared keyword instructs SAP ASE to use a shared lock (instead of an update lock) on a specified table or
view in a cursor.

Related Information

shared Keyword Usage [page 84]

6.3 Readpast Locking

Readpast locking allows select and readtext queries to skip all rows or pages locked with incompatible
locks. The queries do not block, terminate, or return error or advisory messages to the user. Readpast locking
is largely designed to be used in queue-processing applications.

In general, these applications allow queries to return the first unlocked row that meets query qualifications. An
example might be an application tracking calls for service: the query needs to find the row with the earliest
timestamp that is not locked by another repair representative.

For more information on readpast locking, see “Locking Commands and Options” in the Transact-SQL User’s
Guide.

82 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

6.4 Cursors and Locking

Cursor locking methods are similar to the other locking methods in SAP ASE. For cursors declared as read
only or declared without the for update clause, SAP ASE uses a shared page lock on the data page that
includes the current cursor position.

When additional rows for the cursor are fetched, SAP ASE acquires a lock on the next page, the cursor position
is moved to that page, and the previous page lock is released (unless you are operating at isolation level 3).

For cursors declared with for update, SAP ASE uses update page locks by default when scanning tables or
views referenced with the for update clause of the cursor. For data-only-locked tables, SAP ASE may use a
table scan to avoid the Halloween problem. For more information see “Optimization for Cursors” in
Performance and Tuning Series: Query Processing and Abstract Plans.

If the for update list is empty, all tables and views referenced in the from clause of the select statement
receive update locks. An update lock is a special type of read lock that indicates that the reader may modify the
data soon. An update lock allows other shared locks on the page, but does not allow other update or exclusive
locks.

If a row is updated or deleted through a cursor, the data modification transaction acquires an exclusive lock.
Any exclusive locks acquired by updates through a cursor in a transaction are held until the end of that
transaction and are not affected by closing the cursor. This is also true of shared or update locks for cursors
that use the holdlock keyword or isolation level 3.

Locking behavior for cursors at each isolation level is as follows:

● At level 0, SAP ASE uses no locks on any base table page that contains a row representing a current cursor
position. Cursors acquire no read locks for their scans, so they do not block other applications from
accessing the same data.
However, cursors operating at this isolation level are not updatable, and they require a unique index on the
base table to ensure accuracy.

● At level 1, SAP ASE uses shared or update locks on base table or leaf-level index pages that contain a row
representing a current cursor position.
The page remains locked until the current cursor position moves off the page as a result of fetch
statements.

● At level 2 or 3, SAP ASE uses shared or update locks on any base table or leaf-level index pages that have
been read in a transaction through the cursor.
SAP ASE holds the locks until the transaction ends; it does not release the locks when the data page is no
longer needed or when the cursor is closed.

If you do not set the close on endtran or chained options, a cursor remains open past the end of the
transaction, and its current page locks remain in effect. It may also continue to acquire locks as it fetches
additional rows.

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 83

6.4.1 shared Keyword Usage

When declaring an updatable cursor using the for update clause, you can use shared page locks (instead of
update page locks) in the declare cursor statement:

declare <cursor_name> cursor for select <select_list> from {<table_name> | <view_name>} shared for update [of <column_name_list>]

This allows other users to obtain an update lock on the table or an underlying table of the view.

You can use the holdlock keyword with shared after each table or view name. holdlock must precede
shared in the select statement. For example:

declare authors_crsr cursor for select au_id, au_lname, au_fname
 from authors holdlock shared
 where state != ’CA’ for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options when defining an updatable cursor:

● If you do not specify either option, the cursor holds an update lock on the row or on the page containing the
current row.
Other users cannot update, through a cursor or otherwise, the row at the cursor position (for datarows-
locked tables) or any row on this page (for allpages and datapages-locked tables).
Other users can declare a cursor on the same tables you use for your cursor, and can read data, but they
cannot get an update or exclusive lock on your current row or page.

● If you specify the shared option, the cursor holds a shared lock on the current row or on the page
containing the currently fetched row.
Other users cannot update, through a cursor or otherwise, the current row, or the rows on this page. They
can, however, read the row or rows on the page.

● If you specify the holdlock option, you hold update locks on all the rows or pages that have been fetched
(if transactions are not being used) or only the pages fetched since the last commit or rollback (if in a
transaction).
Other users cannot update, through a cursor or otherwise, currently fetched rows or pages.
Other users can declare a cursor on the same tables you use for your cursor, but they cannot get an update
lock on currently fetched rows or pages.

● If you specify both options, the cursor holds shared locks on all the rows or pages fetched (if not using
transactions) or on the rows or pages fetched since the last commit or rollback.
Other users cannot update, through a cursor or otherwise, currently fetched rows or pages.

6.5 lock table

Explicitly locks a table within a transaction.

In transactions, you can use the lock table command to:

● To immediately lock the entire table, rather than waiting for lock promotion to take effect.

84 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

● When the query or transactions uses multiple scans, and none of the scans locks a sufficient number of
pages or rows to trigger lock promotion, but the total number of locks is very large.

● When large tables, especially those using datarows locking, need to be accessed at transaction level 2 or 3,
and lock promotion is likely to be blocked by other tasks. Using lock table can prevent running out of
locks.

The table locks are released at the end of the transaction.

lock table allows you to specify a wait period. If the table lock cannot be granted4 within the wait period, an
error message is printed, but the transaction is not rolled back.

6.6 Lock Timeouts
Specify the amount of time that a task waits for a lock

You can specify:

● At the server level, with the lock wait period configuration parameter
● For a session or in a stored procedure, with the set lock wait command
● For a lock table command

See the Transact-SQL Users Guide for more information on these commands.

Except for lock table, a task that attempts to acquire a lock and fails to acquire it within the time period
returns an error message and the transaction is rolled back.

Using lock timeouts can be useful for removing tasks that acquire some locks, and then wait for long periods of
time blocking other users. However, since transactions are rolled back, and users may simply resubmit their
queries, timing out a transaction means that the work needs to be repeated.

Use sp_sysmon to monitor the number of tasks that exceed the time limit while waiting for a lock.

See “Lock time-out information” in Performance and Tuning Series: Monitoring SAP ASE with sp_sysmon.

6.7 Preventing Blocking Row Counts
SAP ASE enables you to prevent row counts from blocking.

Row counts can block on objects that already have an EX_TAB lock and time out while waiting for an SH_INT
lock. Prevent blocking row counts with the following options:

● row_count ... noblock – retrieves the count values from in-memory descriptors achieving non-
blocking behavior. The syntax is:

 row_count(<dbid>, <object_id> [,ptnid] [,"noblock"])

● set non_blocking_builtins – configures the current session to use the nonblocking behavior. The
syntax is:

 set non_blocking_builtins {on | off}

Performance and Tuning Series: Locking and Concurrency Control
Lock Commands P U B L I C 85

This example determines the row count for database Id 4 and object Id 1586101660:

select row_count(4, 1586101660,"noblock") --------------------- 41000

This specifies non-blocking behavior for row_count, for the session:

set non_blocking_builtins on

86 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Lock Commands

7 Indexes

SAP ASE stores indexes and uses them to speed data retrieval for select, update, delete, and insert operations.

Indexes are the most important physical design element in improving database performance:

● Indexes help to avoid table scans. A few index pages and data pages can satisfy many queries without
requiring reads on hundreds of data pages.

● For some queries, data can be retrieved from a nonclustered index without accessing data rows.
● Clustered indexes can randomize data inserts, avoiding insert hot spots on the last page of a table.
● Indexes can help to avoid sorts, if the index order matches the order of the columns in an order by

clause.
● For most partitioned tables, you can create global indexes with one index tree to cover the whole table, or

you can create local indexes with multiple index trees, each of which covers one partition of the table.

In addition to their performance benefits, indexes can enforce the uniqueness of data.

Indexes are database objects created on a table to speed direct access to specific data rows. Indexes store the
values of the keys named when the index was created and logical pointers to the data pages or to other index
pages.

Although indexes speed data retrieval, they can slow down data modifications, since most changes to the data
require index updates. Optimal indexing demands an understanding of:

● The behavior of queries that access unindexed heap tables, tables with clustered indexes, and tables with
nonclustered indexes

● The mix of queries that run on your server
● The relative benefits of local and global indexes on partitioned tables
● The SAP ASE optimizer

7.1 Types of Indexes

SAP ASE provides two general types of indexes that can be created at the table or at the partition level.

● Clustered indexes, where the data is physically stored in the order of the keys on the index:
○ For allpages-locked tables, rows are stored in key order on pages, and pages are linked in key order.
○ For data-only-locked tables, indexes are used to direct the storage of data on rows and pages, but strict

key ordering is not maintained.
● Nonclustered indexes, where the storage order of data in the table is not related to index keys

You can create only one clustered index on a table or partition because there is only one possible physical
ordering of the data rows. You can create up to 249 nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the table are in no particular order, and all new
rows are added to the end of the table. Chapter 2, “Data Storage,” in Performance and Tuning Series: Physical
Database Tuning discusses heaps and SQL operations on heaps.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 87

Function-based indexes are a type of nonclustered index which use one or more expressions as the index key.
See the Transact-SQL Users Guide for more on creating function-based indexes.

Related Information

Indexes and Partitions [page 98]
Indexing for Concurrency Control [page 116]

7.1.1 Index Pages

Index entries are stored as rows on index pages in a format similar to that of data rows on data pages. Index
entries store key values and pointers to lower levels of the index, to the data pages, or to individual data rows.

SAP ASE uses B-tree indexing, so each node in the index structure can have multiple children.

Index entries are usually much smaller than a data row in a data page, and index pages are typically much more
densely populated than data pages. If a data row has 200 bytes (including row overhead), there are 10 rows per
page on a 2K server. However, an index on a 15-byte field has about 100 rows per index page on a 2K server (the
pointers require 4 – 9 bytes per row, depending on the type of index and the index level).

Indexes can have multiple levels:

● Root level
● Leaf level
● Intermediate level

7.1.1.1 Root Level

The root level is the highest level of the index. There is only one root page.

If an allpages-locked table is very small, so that the entire index fits on a single page, there are no intermediate
or leaf levels, and the root page stores pointers to the data pages.

Data-only-locked tables always have a leaf level between the root page and the data pages.

For larger tables, the root page stores pointers to the intermediate level index pages or to leaf-level pages.

7.1.1.2 Leaf Level

The lowest level of the index is the leaf level.

At the leaf level, an index contains a key value for each row in the table, and the rows are stored in sorted order
by the index key:

88 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

● For clustered indexes on allpages-locked tables, the leaf level is the data. No other level of the index
contains one index row for each data row.

● For nonclustered indexes and clustered indexes on data-only-locked tables, the leaf level contains the index
key value for each row, a pointer to the page, and the row containing the specific key value.
The leaf level is the level just above the data; it contains one index row for each data row. Index rows on the
index page are stored in key value order.

7.1.1.3 Intermediate Level

All levels between the root and leaf levels are intermediate levels. An index on a large table or an index using
long keys may have many intermediate levels. Indexes on a very small table may not have an intermediate level;
the root pages point directly to the leaf level.

7.1.2 Index Size

Index size limits for APL and DOL tables.

Page Size User-visible Index Row-size Limit Internal Index Row-size Limit

2K (2048 bytes) 600 650

4K (4096 bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5400

You can create tables with columns wider than the limit for the index key; however, these columns become
nonindexable. For example, if you perform the following on a 2K page server, then try to create an index on c3,
the command fails and SAP ASE issues an error message because column c3 is larger than the index row-size
limit (600 bytes).

create table t1 (c1 intc2 intc3 char(700))

You can still create statistics for a nonindexable column, or include it in search results. Also, if you include the
column in a where clause, it is evaluated during optimization.

An index row size that is too large can result in frequent index page splits. Page splits can make the index level
grow linearly with the number of rows in the table, making the index useless because the index traverse
becomes expensive. SAP ASE limits the index size to, at most, approximately one third of server’s page size, so
that each index page contains at least three index rows.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 89

7.1.3 Using Latch-Free Indexes

SAP ASE allows you to create indexes that do not require latches during traversals or scans, which can reduce
contention. You can use latch-free indexes only on data-only locked user tables.

 Note
This feature is part of the MemScale option. See SAP ASE Options in the Installation Guide for your
platform. Before using this feature, set the enable mem scale configuration parameter. Next, set the
enable LFB index configuration parameter. See System Administration Guide, Volume 1

Scans or traversals on latched indexes use the buffer manager to retrieve an index page, which can result in
contention when opposing threads try to acquire the same latch. Latch-free indexes use in-memory mapping
tables instead of buffer managers to retrieve an index page. Mapping tables are database specific and are
created when DML occurs on latch-free indexes in this database for the first time. Mapping tables are an array
with a single field, which contains the memory address of an index page. A non-null field indicates that SAP
ASE can use this memory address to locate changes for this page. A null field indicates that this page is not
cached in a mapping table (maybe it is already in memory, but not cached in a mapping table).

Latch-free indexes use delta updates (that is, changes since the last commit) to prepend changes to the index
page instead of changing the page directly. The mapping table that corresponds to the change points to the
latest delta update to ensure that the page is physically unchanged when some sessions are performing
traversal on that page. That is, a page in memory looks like chained delta structures and ends with the original
buffer of the page. When the there are 16 delta changes to one index page, the server consolidates the changes
to a page in memory and updates the corresponding mapping table.

Use create table to create a table that allows latch-free indexes. All subsequent indexes created on this
table will use the latch-free policy. Use create index to create the latch-free index.

The syntax is:

create table <table_name> ... with latch_free_index {on | off}

For example:

create table big_table (storid char(4) not null
 , ord_num varchar(20) not null
 , order_date datetime not null
) with latch_free_index = on

Create the latch-free index:

create index idx_char on big_table(storid)

Use alter table to change the latch-free index policy of an existing table. Use alter index to alter the
latch-free policy of an existing index. Enabling or disabling the latch-free policy of a table does not affect the
policy of the existing indexes; it only affects the policy of subsequent indexes.

The syntax is:

alter table <table_name>

90 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

... set latch_free_index = {on | off}

alter index <table_name>.<index_name> ... set latch_free_index = {on | off}

Use create database to create a database that enables latch-free-index by default. All tables created in this
database use the latch-free policy.

The syntax is:

create database <database_name> ... with latch_free_index {on | off}

Use alter database to change the latch-free index policy of a database. Enabling or disabling the latch-free
policy of a database does not affect the policy of the existing tables and indexes; it only affects the policy of
subsequent tables. Use the for all tables option to change the latch-free policy of all existing tables and
indexes.

The syntax is:

alter database <database_name> ... set latch_free_index = {on | off} [for all tables]

See Reference Manual: Commands.

Use monLocks monitoring table to make sure that the number of latches is reduced while a latch-free index is
enabled.

Monitor latch-free indexes using monLatchFreeIndex.

See Reference Manual: Tables.

7.1.4 Hash-Cache BTree Indexes

Hash-cached Btree indexes consist of a lockless hash table and a traditional Btree index.

Hash caches are primarily used for hot rows (that is, portions of a table, usually small, that are transactionally
active and memory-resident) from in-memory row storage. The hash code is calculated based on index keys of
frequently accessed data rows and is saved in the hash node.

When it is next accessed after it is cached into the hash table, the data row ID is received directly from hash
table, reducing the path to the RID of the qualified data row from the traditional BTree index and improving
performance. Because lockless hash tables are to cache the information of qualified rows, the lock is not taken
while traversing or changing hash tables, preventing query tasks from blocking on tasks that are changing a
hash table. As a result, the time spent on index query is reduced, improving the index layer query performance.

See the In-Memory Database Users Guide for information about in-memory row storage.

Use the create index command to create hash-cache BTree indexes. The syntax is:

create index <index_name>

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 91

. . . with [index_hash_caching = {on [, bucket_count = <number>] on | off | default}]

Use the alter index to change existing indexes to use hash caches. The syntax is:

alter index <index_name> . . . set [index_hash_caching = {on [, bucket_count = <number>] on | off | default}]

See the Reference Manual: Commands.

It is important that the bucket count be set properly. If the bucket count is set too high, more memory is used;
if it is set too low, more hash collisions occur, and, as a result, many hash nodes are mapped to the same hash
bucket, causing the hash chain length to grow. The longer the hash chain, the slower the speed of equality
lookups in the hash chain. If data is not regularly inserted, the bucket count could be up to twice the number of
distinct data rows covered by the index. Alternatively, you can set the bucket count up to twice the number of
distinct data rows covered by the index as starting value, and tune it based on the statistics collected in
monHCBPartitionActivity.

Use the dbcc hcb parameter to display hash-cached BTree information (for example, all hash nodes in a given
hash table, or those in a specified hash bucket). See the Reference Manual: Commands for dbcc syntax and
usage information.

Hash-cached BTree indexes differ from traditional BTree indexes in that:

● Hash caching is used only for equality comparisons that use the = or in operators. Hash caches are not
used for comparison operators that find range values, such as < and >.

● The optimizer cannot use hash caching to expedite order by operations.

A hash table is not initially allocated when you first create a hash-cache BTree index, and no memory is
consumed at that time. When you run the first point query using this index, it searches the BTree index for the
qualified data row. The query then allocates the hash bucket on demand, creates a hash node, fills it with the
hash code and the data row RID, and inserts it into the hash bucket.

The HCB GC background garbage collection task reclaims unused memory from the deleted hash node. The
server creates the HCB GC garbage collection tasks for databases that contain indexes with hash caching
enabled. By default, one task is created for each database. However, if the server requires additional memory
clean-up, and current garbage collection tasks cannot keep up, you can add additional garbage collection tasks
by increasing the number of hcb gc tasks per db configuration parameter. For example, this configures
the server to have 10 HCB GC tasks per database:

sp_configure "number of hcb gc tasks per db", 10

DML interactions with hash-cache BTree indexes:

● insert ‒ inserting a data row into a table with a hash-cache BTree index also inserts a corresponding
index row into the disk-based BTree index. insert does not create new nodes in hash table.

● delete ‒ deleting a data row from a table with a hash-cache BTree index also logically deletes the index
row of the disk-based BTree index. The hash node that points to this row is removed from the hash table
and is added to a GC queue. However, the memory from this node is not freed at this time because there
may be active scanners working on it. HCB GC tasks free this memory at a later time.

● update ‒ updating a data row for a table with a hash-cache BTree also updates the index using a delete
then an insert. If the index row is already cached in the hash table, the entry pointing to the old data row

92 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

image is deleted first. The new data row image is not added to the hash-cache BTree at this time, but is
added by the next point query.

In this example of a table named country, which includes the country_code and country_name columns,
and uses an index with hash caching enabled:

country_code country_name

UK United Kingdom

US United States

ITAL Italy

A hash-cache BTree is created on the country_code column, and the hash function is the first character’s
byte value. A query like select * from contry where country_code = 'US' first calculates the hash
code for US to determine the corresponding bucket index, and follows the link to find the row.

7.1.4.1 Tuning the Hash-Cached B-tree Indexes

Generally, queries using hash-cached B-tree indexes should benefit from a reduced B-tree codepath. There are
a number of ways to determine when queries cannot use hash-cached B-tree indexes.

The monHCBPartitionActivity monitoring table provides information about the total number of hash-
cached B-tree indexes scans performed on an index, and how many of them were successful. For example:

select HDBName, ObjectName, PartitionName, HashCacheScans, HashCacheHits,
HashCacheSkips, NScanFailedNoHashTable, NScanFailedNoHashNode,
NScanFailedNotQualified from master..monHCBPartitionActivity
HDBName ObjectName
PartitionName HashCacheScans HashCacheHits
HashCacheSkips NScanFailedNoHashTable NScanFailedNoHashNode
NScanFailedNotQualified
------------------------------- ------------------------------
------------------------------ ------------------- --------------------
-------------------- ---------------------- ---------------------

 tpcc w_clu
w_clu_592002109 20839897
20839902 1 0
0 0
 tpcc d_clu
d_clu_624002223 21800252
21800243 0 0
0 11
 tpcc i_clu
i_clu_816002907 105868858
105758507 0 0
110355 0
 tpcc s_clu
s_clu_848003021 106784045
98288519 0 0
7518574 960390
 tpcc o_clu
o_clu_752002679 9623634
5 0 0
9609497 0

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 93

 tpcc c_clu
c_clu_656002337 32459225
30060740 0 0
2396220 53

In this output:

● HashCacheScans ‒ total number of scans for which a search of in-memory hash tables was attempted.
● HashCacheHits ‒ number of scans for which a hash-cached B-tree index node was found using index

search arguments, but the data search arguments, if any, matched; no need to run a B-tree search.
● HashCacheSkips ‒ an in-memory hash table cannot be used, either because it is a point query specifying

a limited number of index key columns, or it is a range query; no need to run a B-tree search.
● NScanFailedNoHashTable ‒ number of scans that failed to use an in-memory hash table because it was

not yet instantiated; the scan will instead use a full B-tree search
● NScanFailedNoHashNode ‒ number of scans that could not find a hash node corresponding to the index

search argument; the scan will instead use a B-tree search.
● NScanFailedNotQualified ‒ number of scans for which a hash node was found using index search

arguments, but the data search arguments did not qualify; no need to run a B-tree search

monHCBPartitionActivity also provides useful information concerning the size of the hash-cache B-tree
hash table for each index, the maximum and average chain lengths, and so on. For example:

select * from master..monHCBPartitionActivity DBID ObjectID IndexID PartitionID TotalBuckets
UsedBuckets MaxChainLength AvgChainLength
MaxScanLength AvgScanLength HashCacheScans
HashCacheHits HashCacheSkips MemoryUsed
NScanFailedNoHashTable NScanFailedNoHashNode NScanFailedNotQualified
NScanRestarts NHashNodeInserted NHashNodeDeleted
DBName ObjectName
PartitionName
 ----------- ----------- ----------- ----------- --------------------
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------
---------------------- --------------------- -----------------------
-------------------- -------------------- --------------------
------------------------------ ------------------------------

 4 592002109 2 592002109
131072 240 1
1 0 0 20839897
20839902 1 1058280
0 0 0
0 0 0 tpcc
w_clu w_clu_592002109
 4 624002223 2 624002223
131072 2379 2
1 1 0 21800252
21800243 0 1144680
0 0 11
0 0 0 tpcc
d_clu d_clu_624002223
 4 816002907 2 816002907
262144 82798 5
1 4 0 105868858
105758507 0 6079712
0 110355 0
0 4414 0 tpcc
i_clu i_clu_816002907
 4 848003021 2 848003021
67108864 12079732 7

94 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

1 6 0 106784045
98288519 0 1069550832
0 7518574 960390
0 7535112 0 tpcc
s_clu s_clu_848003021
 4 752002679 2 752002679
16777216 8101774 8
1 6 0
9623634 5 0
576896024 0 9609497
0 0 9623619 0
tpcc o_clu
o_clu_752002679 4 656002337 2 656002337
16777216 4477038 6
1 5 0 32459225
30060740 0 342544424
0 2396220 53
0 2398426 0 tpcc
c_clu c_clu_656002337

This output provides:

● The maximum hash chain length seen in a hash table (MaxChainLength). The longer the length, the
poorer the scan performance.

● Total amount of memory used by an in-memory hash table, indicated by MemoryUsed.

The monBucketPool monitoring table provides information about the memory pool used by in-memory hash
table with a hash-cached B-tree (for example, bucketpool size, number of buckets, bucketpool overheads, and
so on). Query monBucketPool using a BucketPoolName of HCB Index Memory Pool to view the
information:

select * from monBucketPool where BucketPoolName like "HCB Index Memory Pool"

Check the bucket pool usage by querying monBucketPool using the steps described the "In-Memory
Database Users Guide > Performance and Tuning the IMRS."

If the server is not utilizing the hash-cache B-tree efficiently due to insufficient memory, allocate additional
memory to the hash-cache B-tree memory pool with the HCB index memor pool size configuration
parameter. For example:

sp_configure "HCB index memory pool size", 1000000

If the configured bucket count is too small, more hash nodes are mapped to the same bucket, resulting in long
hash chains, which take a long time to traverse. monHCBPartitionActivity provides information about the
size of the hash-cached, hash table for each index, the maximum and average chain lengths, and so on:

select DBID, ObjectID, IndexID, PartitionID, TotalBuckets, UsedBuckets,
MaxChainLength, AvgChainLength, MaxScanLength, AvgScanLength, MemoryUsed,
NHashNodesInserted, NHashNodesDeleted from master..monHCBPartitionActivity
 DBID ObjectID IndexID PartitionID TotalBuckets
UsedBuckets MaxChainLength AvgChainLength
MaxScanLength AvgScanLength MemoryUsed
NHashNodesInserted NHashNodesDeleted
 ----------- ----------- ----------- ----------- --------------------
-------------------- -------------------- --------------------
-------------------- -------------------- --------------------
-------------------- --------------------
 4 592002109 2 592002109
131072 240 1

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 95

1 0 0
1058280 0 0
 4 624002223 2 624002223
131072 2379 2
1 1 0
1144680 0 0
 4 816002907 2 816002907
262144 82798 5
1 4 0 6079712
4414 0
 4 848003021 2 848003021
67108864 12079732 7
1 6 0 1069550832
7535112 0
 4 752002679 2 752002679
16777216 8101774 8
1 6 0 576896024
9623619 0
 4 656002337 2 656002337
16777216 4477038 6
1 5 0 342544424
2398426 0

If you see large values in the NHashNodesAllocOOM or NHashBucketsAllocOOM columns of
monHCBPartitionActivity, consider increasing the size of the hash-cache B-tree memory pool.

These columns from the monHCBPartitionActivity monitoring table give a general idea about maximum
and average chain length:

● MaxChainLength
● AvgChainLength
● MaxScanLength
● AvgScanLength

These columns from the monHCBPartitionActivity monitoring table indicated the maximum and average
hash nodes traversed by scanners:

● MaxScanLength
● AvgScanLength

A large value (close to 64) indicates that most scanners must traverse numerous hash nodes before stopping.
Consider using alter index to increase the bucket count.

Occasionally, hash nodes may not be well distributed in all hash buckets, with some hash chains being very
long and others very short. If the NScanFailedMaxScanLength column has a large value, consider using
alter index to increase the configured bucket count.

7.1.4.2 Determining if Auto Tuning Thresholds Are
Adequate

Generally, HCB auto tuning relies on a series of collected metrics to evaluate whether hash caching is used
efficiently, and disables it for those indexes if it is not.

These are the important metrics used during the evaluation:

● Point query rate – the default threshold is 30%. Set this threshold with the point query rate
threshold configuration parameter.

96 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

● Hash table hit rate – the default threshold is 60%. Set this threshold with the hash table hit rate
threshold configuration parameter.

If either of these rates are lower than their threshold, hash-cache index auto tuning task attempts to disable
index hash caching for this index. The higher you set the thresholds, the more rigorous the server selects for
hash-cache indexes that are suitable.

monHCBTuneActivity provides some rough information about the auto tuning threshold rates. For example

select * from monHCBTuningActivity DBName ObjectName PartitionName CurPQueryRate LastPQueryRate
AvgPQueryRate PQueryRateThreshold CurHashScanHitRate LastHashScanHitRate
AvgHashScanHitRate HashScanHitRateThreshold
--------- ---------------- ---------------- ------------- --------------
------------- ------------------- ------------------- --------------------
-------------------- ------------------------
tpcc w_clu w_clu_592002109 100
100 100 30 100
100 99 60
tpcc d_clu d_clu_624002223 100
100 100 30 100
100 99 60
tpcc i_clu i_clu_816002907 100
100 100 30 99
99 99 60
tpcc s_clu s_clu_848003021 100
100 100 30 93
92 71 60
tpcc o_clu o_clu_752002679 100
100 100 30 0
0 0 60 tpcc c_clu c_clu_656002337 100
100 100 30 95
94 78 60

Use the average, last, and current rates as a reference to modify the thresholds. These columns give a rough
idea if the point query rate is too small

● CurPQueryRate
● LastPQueryRate
● AvgPQueryRate
● PQueryRateThreshold

These columns help identify if the hash table hit rate is adequate:

● CurHashScanHitRate
● LastHashScanHitRate
● AvgHashScanHitRate
● HashScanHitRateThreshold

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 97

7.2 Indexes and Partitions

Partitioned tables include additional indexing options. Indexes on partitioned tables can be either global (one
index tree covering all the data in the table) or local (multiple index trees, each of which covers only the data
within its corresponding data partition).

7.2.1 Local Indexes on Partitioned Tables

Both clustered and nonclustered local indexes are supported on all types of partitioned tables. Each index
partition spans a single data partition; that is, the index partition is “equipartitioned” with the table. On range-,
list-, and hash-partitioned tables, clustered indexes are always local indexes.

When you create a local index, you actually create separate index trees for each partition in the table. However,
SAP ASE does not support partial indexes, so you cannot selectively create local indexes for certain partitions.

7.2.2 Global Indexes on Partitioned Tables

Global indexes on partitioned tables span all the partitions in the table; that is, a single index tree covers all the
data in the table, regardless of partitions.

Global indexes on range-, list-, or hash-partitioned tables may only be nonclustered, since clustered index
ordering conflicts with partition ordering of the data.

Global clustered indexes are allowed on round-robin partitioned tables.

7.2.3 Local versus Global Indexes

Differences between local and global indexes.

● Local indexes can increase concurrency through multiple index access points, which reduces root-page
contention.

● You can place local nonclustered index subtrees (index partitions) on separate segments to increase I/O
parallelism.

● You can run reorg rebuild on a per-partition basis, reorganizing the local index sub-tree while
minimizing the impact on other operations.

● Global nonclustered indexes are better for covered scans than local indexes, especially for queries that
need to fetch rows across partitions.

98 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.2.4 Unsupported Partition Index Types

Global partitioned indexes are not supported, meaning that global indexes that cover all the data in the table
are not themselves partitioned. Global clustered indexes are supported only on round-robin partitioned tables.

7.3 Creating Partial Indexes

Partial indexes produce a subset of rows, allowing the index to remain small and extremely selective, even
though the table may be large. Partial indexes are also known as filtered indexes.

Context

In SAP ASE 15.7 SP130 and later, partial indexes are based on partitioned tables, and the condition that creates
the partial index is the same as the condition that defines the data partition.

Versions of the server earlier than SP130 runcreate local index in serial if the table has more than 254
partitions. However, you can configure SP130 and later at the session level to create local indexes in parallel
(typically used to create partial indexes for different data partitions in different sessions). Create partial indexes
for different data partitions concurrently, using a number of sessions that is based on the available system
resources like the number of engines, size of the data cache, and so on.

After you create all index partitions, the indexes become regular local indexes.

For example, if table t_big has 300 data partitions named dp1, dp2,dp3,…,dp300, and the system includes 3
engines available for creating indexes, you can use 3 sessions to create partial indexes:

● Session 1 – create partial index for dp1, dp4,…dp298
● Session 2 – create partial index for dp2, dp5,…dp299
● Session 3 – create partial index for dp3, dp6,…dp300

Use sp_helpindex to display whether an index is a partial or a local index.

Use partial indexes when any of the following are true:

● The table is located on a nonproxy, user database.
● The table is user-partitioned, and is not a proxy or deferred table.
● The index is a nonclustered local index, and is not a functional replication index.
● The index was not created with online index.

For example, if you partition a table according to phone number area codes, each partial index would comprise
one of the area codes.

Use the create index command to create partial indexes. The syntax is

create [unique] [nonclustered] index <index_name> on [[<database>.]<owner>.]<table_name> . . . | partial index [<index_partition_name>] [on <segment_name>]

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 99

 for <data_partition_name>

Procedure

For example, if your partitioned tables includes millions of rows of real estate data partitioned according to zip
code, but you are only interested in houses in the 94121 area code, you could create a partial index on the
houses that are in this zip code, significantly reducing the amount of data SAP ASE needs to index:

create index address_idx on address_tab(zip_code, name, address_str) partial index 94121_index for 94121_partition

7.4 Clustered Indexes on Allpages-locked Tables

In clustered indexes on allpages-locked tables, leaf-level pages are also the data pages, and all rows are kept in
physical order by the keys.

Physical ordering means that:

● All entries on a data page are in index key order.
● By following the “next page” pointers on the data pages, SAP ASE reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next level.

7.4.1 Clustered Indexes and select Operations

SAP ASE uses syspartitions to find the root page to select a particular column (for example, a last name)
using a clustered index (in versions earlier than 15.0, SAP ASE used sysindexes).

SAP ASE examines the values on the root page and then follows page pointers, performing a binary search on
each page it accesses as it traverses the index.

100 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

In the root level page, “Green” is greater than “Bennet,” but less than Karsen, so the pointer for “Bennet” is
followed to page 1007. On page 1007, “Green” is greater than “Greane,” but less than “Hunter,” so the pointer to
page 1133 is followed to the data page, where the row is located and returned to the user.

This retrieval using the clustered index requires one read for each of the:

● Root level of the index
● Intermediate level
● Data page

These reads may come either from cache or from disk. On tables that are frequently used, the higher levels of
the indexes are often found in cache, with lower levels and data pages being read from disk.

7.4.1.1 Relationship Between Physical and Logical Reads

If SAP ASE reads a page from disk, it is counted as a physical and a logical read. The cost of logical I/O is always
greater than or equal to physical I/O.

Logical I/O always reports 2K data pages. Physical reads and writes are reported in buffersized units. Multiple
pages that are read in a single I/O operation are treated as a unit: they are read, written, and moved through the
cache as a single buffer.

7.4.2 Clustered Indexes and insert Operations

When you insert a row into an allpages-locked table with a clustered index, the data row must be placed in
physical order according to the key value on the table.

Other rows on the data page move down on the page, as needed, to make room for the new value. As long as
there is room for the new row on the page, the insertion does not affect any other pages in the database.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 101

The clustered index is used to find the location for the new row.

This figure shows a simple case where there is room on an existing data page for the new row. In this case, the
key values in the index do not need to change.

7.4.3 Page Splitting on Full Data Pages

If there is not enough room on the data page for the new row, a page split must be performed.

● A new data page is allocated on an extent already in use by the table. If there is no free page available, a
new extent is allocated.

● The next and previous page pointers on adjacent pages are changed to incorporate the new page in the
page chain. This requires reading those pages into memory and locking them.

● Approximately half of the rows are moved to the new page, with the new row inserted in order.
● The higher levels of the clustered index change to point to the new page.
● If the table also has nonclustered indexes, all pointers to the affected data rows must be changed to point

to the new page and row locations.

In some cases, page splitting is handled slightly differently.

In this figure, the page split requires adding a new row to an existing index page, page 1007.

102 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

Related Information

Exceptions to Page Splitting [page 103]

7.4.3.1 Exceptions to Page Splitting

There are exceptions to 50-50 page splits.

● If you insert a large row that cannot fit on the page before or the page after the page that requires splitting,
two new pages are allocated, one for the large row and one for the rows that follow it.

● If possible, SAP ASE keeps duplicate values together when it splits pages.
● If SAP ASE detects that all inserts are taking place at the end of the page, due to a increasing key value, the

page is not split when it is time to insert a new row that does not fit at the bottom of the page. Instead, a
new page is allocated, and the row is placed on the new page.

● If SAP ASE detects that inserts are taking place in order at other locations on the page, the page is split at
the insertion point.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 103

7.4.4 Page Splitting on Index Pages

If a new row needs to be added to a full index page, the page split process on the index page is similar to the
data page split.

A new page is allocated, and half of the index rows are moved to the new page.

A new row is inserted at the next highest level of the index to point to the new index page.

7.4.5 Performance Impacts of Page Splitting

In addition to the actual work of moving rows, allocating pages, and logging the operations, page splits are
expensive operations.

The cost is increased by updating:

● The clustered index itself
● Page pointers on adjacent pages to maintain page linkage
● All nonclustered index entries that point to the rows affected by the split

When you create a clustered index for a table that will grow over time, you may want to use fillfactor to
leave room on data pages and index pages. This reduces the number of page splits for a time.

Related Information

Choose Space Management Properties for Indexes [page 134]

7.4.6 Overflow Pages

Special overflow pages are created for nonunique clustered indexes on allpages-locked tables when a newly
inserted row has the same key as the last row on a full data page.

A new data page is allocated and linked into the page chain, and the newly inserted row is placed on the new
page.

104 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

The only rows that are placed on the overflow page are additional rows with the same key value. In a nonunique
clustered index with many duplicate key values, there can be numerous overflow pages for the same value.

The clustered index does not contain pointers directly to overflow pages. Instead, the next page pointers are
used to follow the chain of overflow pages until a value is found that does not match the search value.

7.4.7 Clustered Indexes and delete Operations

When you delete a row from an allpages-locked table that has a clustered index, other rows on the page move
up to fill the empty space so that the data remains contiguous on the page.

This figure shows a page that has four rows before a delete operation removes the second row on the page.
The two rows that follow the deleted row are moved up.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 105

7.4.7.1 Deleting the Last Row on a Page

If you delete the last row on a data page, the page is deallocated and the next and previous page pointers on the
adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the index are removed.

If the deallocated data page is on the same extent as other pages belonging to the table, it can be used again
when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to the table, the extent is also
deallocated and becomes available for the expansion of other objects in the database.

This figure shows the table after the deletion, the pointer to the deleted page has been removed from index
page 1007 and the following index rows on the page have been moved up to keep the used space contiguous.

106 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.4.7.2 Index Page Merges

If you delete a pointer from an index page, leaving only one row on that page, the row is moved onto an adjacent
page, and the empty page is deallocated. The pointers on the parent page are updated to reflect the changes.

7.5 Nonclustered Indexes

The B-tree works much the same for nonclustered indexes as it does for clustered indexes, but there are some
differences.

In nonclustered indexes:

● Leaf pages are not the same as the data pages.
● Leaf level stores one key-pointer pair for each row in the table.
● Leaf-level pages store the index keys, data page number, and row number for the data row to which this

index row is pointing. This combination of page number and row offset number is called the row ID.
● The root and intermediate levels store index keys and page pointers to other index pages. They also store

the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than clustered indexes.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 107

7.5.1 Leaf Pages Revisited

The leaf page of an index is the lowest level of the index where all of the keys for the index appear in sorted
order.

In clustered indexes on allpages-locked tables, the data rows are stored in order by the index keys, so by
definition, the data level is the leaf level. There is no other level of the clustered index that contains one index
row for each data row. Clustered indexes on allpages-locked tables are sparse indexes.

The level above the data contains one pointer for every data page, not data row.

In nonclustered indexes and clustered indexes on data-only-locked tables, the level just above the data is the
leaf level: it contains a key-pointer pair for each data row. These indexes are dense. At the level above the data,
they contain one index row for each data row.

7.5.2 Nonclustered Index Structure

An example showing a nonclustered index on lname.

The data rows at the far right show pages in ascending order by employee_id (10, 11, 12, and so on) because
there is a clustered index on that column.

The table in shows

The root and intermediate pages store:

● The key value
● The row ID
● The pointer to the next level of the index

The leaf level stores:

● The key value
● The row ID

The row ID in higher levels of the index is used for indexes that allow duplicate keys. If a data modification
changes the index key or deletes a row, the row ID positively identifies all occurrences of the key at all index
levels.

108 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.5.3 Nonclustered Indexes and select Operations
When you select a row using a nonclustered index, the search starts at the root level. syspartitions stores
the page number for the root page of the nonclustered index (stored in sysindexes in SAP ASE versions
earlier than 15.0).

In this figure, “Green” is greater than “Bennet,” but less than “Karsen,” so the pointer to page 1007 is followed.

“Green” is greater than “Greane,” but less than “Hunter,” so the pointer to page 1133 is followed. Page 1133 is
the leaf page, showing that the row for “Green” is row 2 on page 1421. This page is fetched, the “2” byte in the
offset table is checked, and the row is returned from the byte position on the data page.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 109

This query requires one read for each:

● Root level page
● Intermediate level page
● Leaf-level page
● Data page

If your applications use a particular nonclustered index frequently, the root and intermediate pages are
probably in cache, so it is likely that only one or two physical disk I/Os need to be performed.

7.5.4 Nonclustered Indexes and insert Operations

When you insert rows into a heap that has a nonclustered index and no clustered index, the rows are inserted in
the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the partitions. Then, the nonclustered index
is updated to include the new row.

If the table has a clustered index, the clustered index is used to find the location for the row. The clustered
index is updated, if necessary, and each nonclustered index is updated to include the new row.

This figure shows an insert into a heap table with a nonclustered index. The row is placed at the end of the
table. A row containing the new key value and the row ID is also inserted into the leaf level of the nonclustered
index.

110 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.5.5 Nonclustered Indexes and delete Operations

When a row is deleted from a table, the query can use a nonclustered index on the columns in the where clause
to locate the data row to delete.

The row in the leaf level of the nonclustered index that points to the data row is also removed. If there are other
nonclustered indexes on the table, the rows on the leaf level of those indexes are also deleted.

If the deletion removes the last row on the data page, the page is deallocated and the adjacent page pointers
are adjusted in allpages-locked tables. Any references to the page are also deleted in higher levels of the index.

If the delete operation leaves only a single row on an index intermediate page, index pages may be merged, as
with clustered indexes.

There is no automatic page merging on data pages, so if your applications make many random deletes, you
may end up with data pages that have only a single row, or a few rows, on a page.

Related Information

Index Page Merges [page 107]

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 111

7.5.6 Clustered Indexes on Data-only-locked Tables

Clustered indexes on data-only-locked tables are structured like nonclustered indexes. They have a leaf level
above the data pages. The leaf level contains the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the data rows in a data-only-locked table are not necessarily
maintained in exact order by the key. Instead, the index directs the placement of rows to pages that have
adjacent or nearby keys.

When a row is inserted in a data-only-locked table with a clustered index, the insert uses the clustered index
key just before the value to be inserted. The index pointers are used to find that page, and the row is inserted on
the page if there is room. If there is not room, the row is inserted on a page in the same allocation unit, or on
another allocation unit already used by the table.

To provide nearby space for maintaining data clustering during inserts and updates to data-only-locked tables,
you can set space management properties to provide space on pages (using fillfactor and
exp_row_size) or on allocation units (using reservepagegap).

See “Setting Space Management Properties,” in Performance and Tuning Series:Physical Database Tuning.

7.6 Index Covering

Index covering can produce dramatic performance improvements when all columns needed by the query are
included in the index.

You can create indexes on more than one key. These are called composite indexes. Composite indexes can have
up to 400 columns, adding up to a maximum 600 bytes.

If you create a composite nonclustered index on each column referenced in the query’s select list and in any
where, having, group by, and order by clauses, the query can be satisfied by accessing only the index.

Since the leaf level of a nonclustered index or a clustered index on a data-only-locked table contains the key
values for each row in a table, queries that access only the key values can retrieve the information by using the
leaf level of the nonclustered index as if it were the actual table data. This is called index covering.

Both matching and nonmatching index scans can use an index that covers a query.

Related Information

Composite Indexes Selection [page 129]

112 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.6.1 Covering Matching Index Scans

Covering matching index scans lets you skip the last read for each row returned by the query, the read that
fetches the data page.

For point queries that return only a single row, the query’s performance gain is slight— just one page.

For range queries, the performance gain is larger, since the covering index saves one read for each row returned
by the query.

For a covering matching index scan to be used, the index must contain all columns named in the query. In
addition, the columns in the where clauses of the query must include the leading column of the columns in the
index.

For example, for an index on columns A, B, C, and D, the following sets can perform matching scans: A, AB,
ABC, AC, ACD, ABD, AD, and ABCD. The columns B, BC, BCD, BD, C, CD, or D do not include the leading column
and can be used only for nonmatching scans.

When doing a matching index scan, SAP ASE uses standard index access methods to move from the root of the
index to the nonclustered leaf page that contains the first row.

In this figure, the nonclustered index on lname, fname covers the query. The where clause includes the
leading column, and all columns in the select list are included in the index, so the data page need not be
accessed.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 113

7.6.2 Covering Nonmatching Index Scans

SAP ASE saves I/O by scanning the entire leaf level of the index, rather than scanning the table in certain
scenarios.

When the columns specified in the where clause do not include the leading column in the index, but all
columns named in the select list and other query clauses (such as group by or having) are included in the
index, SAP ASE saves I/O by scanning the entire leaf level of the index, rather than scanning the table.

It cannot perform a matching scan because the first column of the index is not specified.

The query in the following figure shows a nonmatching index scan. This query does not use the leading
columns on the index, but all columns required in the query are in the nonclustered index on lname, fname,
emp_id.

The nonmatching scan must examine all rows on the leaf level. It scans all leaf level index pages, starting from
the first page. It has no way of knowing how many rows might match the query conditions, so it must examine
every row in the index. Since it must begin at the first page of the leaf level, it can use the pointer in
syspartitions.firstpage rather than descend the index.

114 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexes

7.7 Indexes and Caching

Index pages get special handling in the data cache in certain scenarios.

● Root and intermediate index pages always use least recently used (LRU) strategy.
● Index pages can use one cache while the data pages use a different cache, if the index is bound to a

different cache.
● Covering index scans can use fetch-and-discard strategy.
● Index pages can cycle through the cache many times, if number of index trips is configured.

When a query that uses an index is executed, the root, intermediate, leaf, and data pages are read in that order.
If these pages are not in cache, they are read into the MRU end of the cache and are moved toward the LRU end
as additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page chain, so the root page and higher
levels of the index tend to stay in the cache.

“How SAP ASE performs I/O for heap operations” in Performance and Tuning Series: Physical Database Tuning
introduces the basic concepts of the SAP ASE data cache, and shows how caches are used when reading heap
tables.

7.7.1 Using Separate Caches for Data and Index Pages

Indexes and the tables they index can use different caches. A system administrator or table owner can bind a
clustered or nonclustered index to one cache and its table to another.

7.7.2 Index Trips Through the Cache

Data pages make only a single trip through the cache: they are read in at the MRU end of the cache or placed
immediately before the wash marker (A point in the cache on the MRU/LRU chain), depending on the cache
strategy chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that page is reused when another page needs to
be read into cache.

For index pages, a counter controls the number of trips that an index page can make through the cache.

When the counter is greater than 0 for an index page, and it reaches the LRU end of the page chain, the counter
is decremented by 1, and the page is placed at the MRU end again.

By default, the number of trips that an index page makes through the cache is set to 0. To change the default, a
system administrator can set the number of index trips configuration parameter.

Performance and Tuning Series: Locking and Concurrency Control
Indexes P U B L I C 115

8 Indexing for Concurrency Control

Basic query analysis tools can help you choose appropriate indexes. It also discusses index selection criteria
for point queries, range queries, and joins.

8.1 Indexes and Performance

Carefully considered indexes, built on top of a good database design, are the foundation of a high-performance
SAP ASE installation. However, adding indexes without proper analysis can reduce the overall performance of
your system.

Insert, update, and delete operations can take longer when a large number of indexes must be updated.

Analyze your application workload and create indexes as necessary to improve the performance of the most
critical processes.

The SAP ASE query optimizer analyzes the costs of possible query plans and chooses the plan that has the
lowest estimated cost. Since much of the cost of executing a query consists of disk I/O, creating the correct
indexes for your applications means that the optimizer can use indexes to:

● Avoid table scans when accessing data
● Target specific data pages that contain specific values in a point query
● Establish upper and lower bounds for reading data in a range query
● Avoid data page access completely, when an index covers a query
● Use ordered data to avoid sorting data or to favor the less costly ordered-input based JOIN, UNION, GROUP,

or DISTINCT operators over other more expensive algorithms (for example, using merge joins instead of
nested-loop joins and so on).
For example, to select the best index for a join clause:

r.c1=s.c1 and ... r.cn=s.cn

○ Indexes on r or s that have any subset of c1 ... cn as a prefix avoid the sort on the side of the
merge join with the prefix.

○ You can use indexes on both sides of the and clause if they are compatible (that is, they have a
nonempty common prefix covered by the equijoin clause. This common prefix determines the part
of the equijoin clause used as a merge clause (the longer the merge clause, the more effective it is).

○ The query processor enumerates plans with an index on one side and a sort on the other. In the
example above, the index prefix covered by the equijoin clause determines the part of the equijoin
clause used as a merge clause (again, the longer the merge clause, the more effective it is).

You can use similar steps to identify the best index for union, distinct, and group clauses.

You can create indexes to enforce the uniqueness of data and to randomize the storage location of inserts.

116 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

You can set sp_chgattribute 'concurrency_opt_threshold' parameter to avoid table scans for
increased concurrency. The syntax is:

sp_chgattribute <table_name>, "concurrency_opt_threshold", <min_page_count>

For example, this sets the concurrency optimization threshold for a table to 30 pages:

sp_chgattribute lookup_table, "concurrency_opt_threshold", 30

8.2 Detecting Indexing Problems

Major indications of insufficient or incorrect indexing.

● A select statement takes too long.
● A join between two or more tables takes an extremely long time.
● select operations perform well, but data modification processes perform poorly.
● Point queries (for example, where colvalue = 3) perform well, but range queries (for example, where

colvalue > 3 and colvalue < 30) perform poorly.

These underlying problems are described in the following sections.

8.2.1 Symptoms of Poor Indexing

A primary goal of improving performance with indexes is avoiding table scans (which read every page of the
table from disk), or partial table scans, which read only data pages from disk.

A query searching for a unique value in a table that has 600 data pages requires 600 physical and logical reads.
If an index points to the data value, the same query can be satisfied with 2 or 3 reads, a 200 to 300 fold
performance improvement

On a system with a 12-millisecond disk, this is a difference of several seconds compared to less than a second.
Heavy disk I/O by a single query has a negative impact on overall throughput.

8.2.1.1 Lack of Indexes is Causing Table Scans

If select operations and joins take too long, it probably indicates that either an appropriate index does not exist
or, it exists, but is not being used by the optimizer.

showplan output reports whether the table is being accessed by a table scan or index. If you think an index
should be used but showplan reports a table scan:

● In default mode – enable set show_lio_costing, which shows estimates of logical input and output
● In compatibility mode – dbcc traceon(302) output can help you determine the reason. dbcc traceon

displays the costing computations for all optimizing query clauses

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 117

If there is no clause is included in dbcc traceon(302) output, there may be problems with the way the
clause is written. If a clause that you think should limit the scan is included in dbcc traceon(302)
output, look carefully at its costing, and that of the chosen plan reported with dbcc traceon(310).

See Chapter 3, “Displaying Query Optimization Strategies and Estimates” in Performance and Tuning Series:
Query Processing and Abstract Plans for information about using set show_lio_costing. See SAP ASE
Reference Manual: Commands for more information about dbcc traceon and set show_lio_costing.

8.2.1.2 Index is Not Selective Enough

An index is selective if it helps the optimizer find a particular row or a set of rows. An index on a unique identifier
such as a passport number is highly selective, since it lets the optimizer pinpoint a single row.

An index on a nonunique entry such as sex (M, F) is not very selective, and the optimizer uses such an index
only in very special cases.

8.2.1.3 Index Does Not Support Range Queries

Generally, clustered indexes and covering indexes provide good performance for range queries and for search
arguments that match many rows. Range queries that reference the keys of noncovering indexes use the index
for ranges that return a limited number of rows.

As the number of rows the query returns increases, however, using a nonclustered index or a clustered index on
a data-only-locked table can cost more than a table scan.

8.2.1.4 Too Many Indexes Slow Data Modification

If data modification performance is poor, you may have too many indexes.While indexes favor select
operations, they slow down data modifications.

Every insert or delete operation affects the leaf level, (and sometimes higher levels) of a clustered index on a
data-only-locked table, and each nonclustered index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the rows to different pages, requiring an
update of every nonclustered index. Analyze the requirements for each index and try to eliminate those that are
unnecessary or rarely used.

8.2.1.5 Index Entries are Too Large

Guidelines to help reduce index entries.

Try to keep index entries as small as possible. You can create an index’s total key length up to one-third the
page size. However, indexes with this key length can store very few rows per index page, and the index level may

118 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

be high. This increases the number of pages to traverse from the index root to the leaf pages, and increases the
amount of disk I/O needed during queries.

The following example uses values reported by sp_estspace to demonstrate how the number of index pages
and leaf levels required increases with key size. It creates nonclustered indexes using 10-, 20-, and 40-
character keys on a server configured for 2K pages.

create table demotable (c10 char(10), c20 char(20), c40 char(40))

create index t10 on demotable(c10)

create index t20 on demotable(c20)

create index t40 on demotable(c40)

sp_estspace demotable, 500000

Table 9: Effects of Key Size on Index Size and Levels

Index, Key Size Leaf-level Pages Index Levels

t10, 10 bytes 4311 3

t20, 20 bytes 6946 3

t40, 40 bytes 12501 4

The output shows that the indexes for the 10-column and 20-column keys each have three levels, while the 40-
column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

8.2.1.6 Exception for Wide Data Rows and Wide Index Rows

Occasionally, indexes with wide rows may be useful.

When:

● The table has very wide rows, resulting in very few rows per data page.
● The set of queries run on the table provides logical choices for a covering index.
● Queries return a sufficiently large number of rows.

For example, if a table has very long rows, and only one row per page, a query that needs to return 100 rows
must access 100 data pages. An index that covers this query, even with long index rows, can improve
performance.

For example, if the index rows are 240 bytes, the index stores 8 rows per page, and the query must access only
12 index pages.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 119

8.3 Fixing Corrupted Indexes

If the index on one of your system tables has been corrupted, you can use the sp_fixindex system procedure
to repair the index.

Procedure

1. Get the <object_name>, <object_ID>, and <index_ID> of the corrupted index. If you only have a page
number and you need to find the object_name, see the SAP ASE Troubleshooting and Error Messages Guide
for instructions.

2. If the corrupted index is on a system table in the master database, put SAP ASE in single-user mode. See
the SAP ASE Troubleshooting and Error Messages Guide for instructions.

3. If the corrupted index is on a system table in a user database, put the database in single-user mode and
reconfigure to allow updates to system tables:

1> use master 2> go

1> sp_dboption database_name, "single user", true 2> go

1> sp_configure "allow updates", 1 2> go

4. Issue the sp_fixindex command:

1> use database_name 2> go
1> checkpoint
2> go
1> sp_fixindex database_name, object_name, index_ID 2> go

You can use the checkpoint to identify the one or more databases or use an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

 Note
You must be assigned sa_role to run sp_fixindex.

5. Run dbcc checktable to verify that the corrupted index is now fixed.

6. Disallow updates to system tables:

1> use master 2> go
1> sp_configure "allow updates", 0 2> go

120 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

7. Turn off single-user mode:

1> sp_dboption database_name, "single user", false 2> go
1> use database_name
2> go
1> checkpoint 2> go

You can use the checkpoint to identify the one or more databases or use an all clause, which means you
do not have to issue the use database command.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

See SAP ASE Reference Manual: Procedures.

8.3.1 Repairing a Nonclustered Index on sysobjects

Steps to repair a nonclustered index.

Procedure

1. Get the <object_name>, <object_ID>, and <index_ID> of the corrupted index. If you only have a page
number and you need to find the object_name, see the SAP ASE Troubleshooting and Error Messages Guide
for instructions.

2. If the corrupted index is on a system table in the master database, put SAP ASE in single-user mode. See
the SAP ASE Troubleshooting and Error Messages Guide for instructions.

3. If the corrupted index is on a system table in a user database, put the database in single-user mode and
reconfigure to allow updates to system tables:

1> use master 2> go

1> sp_dboption database_name, "single user", true 2> go

1> sp_configure "allow updates", 1 2> go

4. Issue:

1> use database_name 2> go1> checkpoint
2> go1> select sysstat from sysobjects
2> where id = 1 3> go

You can use the checkpoint to identify the one or more databases or use an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 121

5. Save the original sysstat value.

6. Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects 2> set sysstat = sysstat | 4096
3> where id = 1 4> go

7. Run:

1> sp_fixindex database_name, sysobjects, 2 2> go

8. Restore the original sysstat value:

1> update sysobjects 2> set sysstat = sysstat_ORIGINAL
3> where id = object_ID 4> go

9. Run dbcc checktable to verify that the corrupted index is now fixed.

10. Disallow updates to system tables:

1> sp_configure "allow updates", 0 2> go

11. Turn off single-user mode:

1> sp_dboption database_name, "single user", false 2> go1> use database_name
2> go1> checkpoint 2> go

You can use the checkpoint to identify the one or more databases or use an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

8.4 Index Limits and Requirements

Limits that apply to indexes in SAP ASE.

● Because the data for a cluster index is ordered by index key, you can create only one clustered index per
table. SAP ASE creates a clustered index by default as a local index for range-, list-, and hash-partitioned
tables. You cannot create global clustered indexes on range-, list-, or hash-partitioned tables.

● You can create a maximum of 249 nonclustered indexes per table.
● When you create a clustered index, SAP ASE requires empty free space to copy the rows in the table and

allocate space for the clustered index pages. It also requires space to re-create any nonclustered indexes
on the table.
The amount of space required can vary, depending on how full the table’s pages are when you begin and
the space management properties are applied to the table and index pages.
See “Determining the space available for maintenance activities” in “Database Maintenance,” in
Performance and Tuning Series: Physical Database Tuning.

122 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

● The referential integrity constraints unique and primary key create unique indexes to enforce their
restrictions on the keys. By default, unique constraints create nonclustered indexes and primary key
constraints create clustered indexes.

●
● A key can be made up of as many as 31 columns. The maximum number of bytes per index key is varies by

the page size in bytes as follows:

Page Size Max Key Length

2048 600

4096 1250

8192 2600

16384 5300

8.5 Index Choices

Items to consider when you choose an index.

When you are working with index selection you may want to ask these questions:

● What indexes are associated currently with a given table?
● What are the most important processes that make use of the table?
● What is the ratio of select operations to data modifications performed on the table?
● Has a clustered index been created for the table?
● Can the clustered index be replaced by a nonclustered index?
● Do any of the indexes cover one or more of the critical queries?
● Is a composite index required to enforce the uniqueness of a compound primary key?
● Do existing queries contain expressions that could be accelerated by using function-based indexes?
● What indexes can be defined as unique?
● What are the major sorting requirements?
● Do some queries use descending ordering of result sets?
● Do the indexes support joins and referential integrity checks?
● Does indexing affect update types (direct versus deferred)?
● What indexes are needed for cursor positioning?
● If dirty reads are required, are there unique indexes to support the scan?
● Should IDENTITY columns be added to tables and indexes to generate unique indexes? Unique indexes are

required for updatable cursors and dirty reads.

When deciding how many indexes to use, consider:

● Space constraints
● Access paths to table
● Percentage of data modifications versus select operations
● Performance requirements of reports versus OLTP

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 123

● Performance impacts of index changes
● How often you can use update statistics

8.5.1 Index Keys and Logical Keys

You must differentiate index keys from logical keys. Logical keys are part of the database design, defining the
relationships between tables: primary keys, foreign keys, and common keys.

When you optimize your queries by creating indexes, the logical keys may or may not be used as the physical
keys for creating indexes. You can create indexes on columns that are not logical keys, and you may have logical
keys that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns that support the joins, search
arguments, and ordering requirements in queries.

A common error is to create the clustered index for a table on the primary key, even though it is never used for
range queries or ordering result sets.

8.5.2 Guidelines for Clustered Indexes

General guidelines for clustered indexes.

● Most allpages-locked tables should have clustered indexes or use partitions to reduce contention on the
last page of heap tables.
In a high-transaction environment, the locking on the last page severely limits throughput.

● If your environment requires a lot of inserts, do not place the clustered index key on a steadily increasing
value such as an IDENTITY column. Instead, choose a key that places inserts on random pages to minimize
lock contention while remaining useful in many queries. Often, the primary key does not meet this
condition.
This problem is less severe on data-only-locked tables, but is often a major source of lock contention on
allpages-locked tables.

● Clustered indexes provide very good performance when the key matches the search argument in range
queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages are linked in order, providing very fast
performance for queries using a clustered index.
In data-only-locked tables, rows are in key order after the index is created, but the clustering can decline
over time.

● Other good choices for clustered index keys are columns used in order by clauses and in joins.
● If possible, do not include frequently updated columns as keys in clustered indexes on allpages-locked

tables.
When the keys are updated, the rows must be moved from the current location to a new page. Also, if the
index is clustered, but not unique, updates are performed in deferred mode.

124 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

8.5.3 Clustered Index Selection

Choose indexes based on the kinds of where clauses or joins you perform.

Choices for clustered indexes are:

● The primary key, if it is used for where clauses and if it randomizes inserts
● Columns that are accessed by range, such as:

col1 between 100 and 200

col12 > 62 and < 70

● Columns used by order by
● Columns that change infrequently
● Columns used in joins

If there are several possible choices, choose the most commonly needed physical order as a first choice.

As a second choice, look for range queries. During performance testing, check for “hot spots” due to lock
contention.

8.5.4 Candidates for Nonclustered Indexes

When choosing columns for nonclustered indexes, consider all the uses that were not satisfied by your
clustered index choice. In addition, look at columns that can provide performance gains through index
covering.

On data-only-locked tables, clustered indexes can perform index covering, since they have a leaf level above the
data level.

On allpages-locked tables, noncovered range queries work well for clustered indexes, but may not be supported
by nonclustered indexes, depending on the size of the range.

Consider using composite indexes to cover critical queries and to support less frequent queries:

● The most critical queries should be able to perform point queries and matching scans.
● Other queries should be able to perform nonmatching scans using the index, which avoids table scans.

8.5.5 Function-based Indexes Selection

Function-based indexes can provide an inexpensive option for enhancing the performance of certain legacy
applications.

Function-based indexes allow you to create indexes based directly on one or more expressions (see the
Transact-SQL Users Guide). When the index is built, the result of evaluating the expressions for each row is
stored as an index key value, and is not reevaluated at query execution time. This means lookups on the result
of an expression within a SQL query can be very fast. Without function-based indexes, table scans are typically
be required to evaluate the expression for each row in the table for comparison. SAP ASE creates a hidden
computed column containing the evaluated key expressions and indexes this column.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 125

You can effectively use function-based indexes for queries that need to apply a function or operation to a
column value and compare the result to another column in the same row or to a constant or variable.

You can also obtain the performance benefits of function-based indexes by adding a materialized computed
column with index to a table and rewriting the query to use the indexed computed column. This can be a good
approach for new application development. The advantage of function-based indexes is that you can simply
add to an existing table an index that matches expressions used in existing queries. In this way, you can
enhance the performance of legacy applications with a minimal schema addition and no change to SQL query
code.

8.5.6 Index Selection

Index selection allows you to determine which indexes are actively being used and those that are rarely used.

This section assumes that the monitoring tables feature is already set up. See the Performance and Tuning
Series: Monitoring Tables for information about installing and using the monitoring tables.

Index selection uses these columns of the monitoring access table, monOpenObjectActivity:

● IndexID – unique identifier for the index.
● OptSelectCount – reports the number of times that the corresponding object (such as a table or index)

was used as the access method by the optimizer.
● LastOptSelectDate – reports the last time OptSelectCount was incremented.
● UsedCount – reports the number of times that the corresponding object (such as a table or index) was

used as an access method when a query executed.
● LastUsedDate – reports the last time UsedCount was incremented.

If a plan has already been compiled and cached, OptSelectCount is not incremented each time the plan is
executed. However, UsedCount is incremented when a plan is executed. If no exec is on, OptSelectCount is
incremented, but UsedCount is not.

Monitoring data is nonpersistent. That is, when you restart the server, the monitoring data is reset. Monitoring
data is reported only for active objects. For example, monitoring data does not exist for objects that have not
been opened, since there are no active object descriptors for such objects. If the system is inadequately
configured and has reused object descriptors, monitoring data for these object descriptors is reinitialized and
the data for the previous object is lost. When the old object is reopened, its monitoring data is reset.

8.5.6.1 Examples of Using Index Selection

Index selection examples.

The following example queries the monitoring tables for the last time all indexes for a specific object were
selected by the optimizer, as well as the last time they were actually used during execution, and reports the
counts in each case:

select DBID, ObjectID, IndexID, OptSelectCount, LastOptSelectDate, UsedCount,
LastUsedDate from monOpenObjectActivity

126 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

where DBID=db_id("financials_db") and ObjectID =
object_id('financials_db..expenses') order by UsedCount

This example displays all indexes that are used—or not currently used—in an application:

select DBID, ObjectID, IndexID, ObjectName = object_name(ObjectID, DBID), LastOptSelectDate, UsedCount, LastUsedDate
from monOpenObjectActivity
where DBID = db_id("MY_1253_RS_RSSD") and ObjectID = object_id('MY_1253_RS_RSSD..rs_columns')

DBID ObjectID IndexID ObjectName LastOptSelectDate UsedCount LastUsedDate
---------- ---------- ----------- ------------------------------
----------------------- ----------- --------------------------
4 192000684 0 rs_columns
May 15 2006 4:18PM 450 May 15 2006 4:18PM
4 192000684 1 rs_columns
NULL 0 NULL
4 192000684 2 rs_columns
NULL 0 NULL
4 192000684 3 rs_columns
May 12 2006 6:11PM 1 May 12 2006 6:11PM
4 192000684 4 rs_columns
NULL 0 NULL
4 192000684 5 rs_columns NULL 0 NULL

If the index is not used, it results in a NULL date. If an index is used, it results in a date like “May 15 2006
4:18PM.”

In this example, the query displays all indexes that are not currently used in the current database:

select DB = convert(char(20), db_name()), TableName = convert(char(20), object_name(i.id, db_id())),
IndexName = convert(char(20),i.name),
IndID = i.indid
from master..monOpenObjectActivity a, sysindexes i
where a.ObjectID =* i.id
and a.IndexID =* i.indid
and (a.UsedCount = 0 or a.UsedCount is NULL)
and i.indid > 0
and object_name(i.id, db_id()) not like "sys%" order by 2, 4 asc

DB TableName IndexName IndID ------------------- -------------------- -------------------- ------
MY_1253_RS_RSSD rs_articles rs_key_articles 1
MY_1253_RS_RSSD rs_articles rs_key4_articles 2
MY_1253_RS_RSSD rs_classes rs_key_classes 1
MY_1253_RS_RSSD rs_classes rs_key2_classes 2
MY_1253_RS_RSSD rs_config rs_key_config 1
MY_1253_RS_RSSD rs_databases rs_key_databases 1
MY_1253_RS_RSSD rs_databases rs_key9_databases 2
MY_1253_RS_RSSD rs_databases rs_key13_databases 3
MY_1253_RS_RSSD rs_databases rs_key14_databases 4
MY_1253_RS_RSSD rs_databases rs_key15_databases 5
MY_1253_RS_RSSD rs_datatype rs_key_datatypes 1 MY_1253_RS_RSSD rs_datatype rs_key2_datatype 2

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 127

8.5.7 Other Indexing Guidelines

Additional considerations for choosing indexes.

● If an index key is unique, define it as unique so the optimizer knows immediately that only one row matches
a search argument or a join on the key.

● If your database design uses referential integrity (the references keyword or the foreign
key...references keywords in the create table statement), the referenced columns must have a
unique index, or the attempt to create the referential integrity constraint fails.
However, SAP ASE does not automatically create an index on the referencing column. If your application
updates primary keys or deletes rows from primary key tables, you may want to create an index on the
referencing column so that these lookups do not perform a table scan.

● If your applications use cursors, see “Index use and requirements for cursors” in “Optimization for
Cursors” in Performance and Tuning Series: Query Processing and Abstract Plans.

● If you are creating an index on a table that will have a lot of insert activity, use fillfactor to
temporarily minimize page splits, improve concurrency, and minimize deadlocking.

● If you are creating an index on a read-only table, use a fillfactor of 100 to make the table or index as
compact as possible.

● Keep the size of the key as small as possible. Your index trees remain flatter, accelerating tree traversals.
● Use small datatypes whenever it fits your design.

○ Internally, numerics compare slightly faster than strings.
○ Variable-length character and binary types require more row overhead than fixedlength types, so if

there is little difference between the average length of a column and the defined length, use fixed
length. Character and binary types that accept null values are, by definition, variable-length.

○ Whenever possible, use fixedlength, nonnull types for short columns that will be used as index keys.
● Be sure that the datatypes of the join columns in different tables are compatible. If SAP ASE has to convert

a datatype on one side of a join, it may not use an index for that table.

8.5.8 Nonclustered Indexes Selection

When you consider adding nonclustered indexes, you must weigh the improvement in retrieval time against the
increase in data modification time.

In addition, consider:

● How much space will the indexes use?
● How volatile is the candidate column?
● How selective are the index keys? Would a scan be better?
● Are there a lot of duplicate values?

Because of data modification overhead, add nonclustered indexes only when your testing shows that they are
helpful.

128 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

8.5.8.1 Performance Price for Data Modification

For all locking schemes, each nonclustered index needs to be updated for each insertion into, and each deletion
from, the table

An update to the table that changes part of an index’s key requires only that index be updated.

For tables that use allpages locking, all indexes need to be updated for:

● Any update that changes the location of a row by updating a clustered index key so that the row moves to
another page

● Every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index pages for the duration of the transaction,
increasing lock contention as well as processing overhead.

Some applications experience unacceptable performance impacts with only three or four indexes on tables
that experience heavy data modification. Other applications can perform well with many more tables.

8.5.9 Composite Indexes Selection

If your analysis shows that more than one column is a good candidate for a clustered index key, you may be
able to provide clustered-like access with a composite index that covers a particular query or set of queries.

These include:

● Range queries.
● Vector (grouped) aggregates, if both the grouped and grouping columns are included. Any search

arguments must also be included in the index.
● Queries that return a high number of duplicates.
● Queries that include order by.
● Queries that table scan, but use a small subset of the columns on the table.

Tables that are read-only or read-mostly can be heavily indexed, as long as your database has enough space
available. If there is little update activity and high select activity, provide indexes for all frequently used queries.
Be sure to test the performance benefits of index covering.

8.5.10 Key Order and Performance in Composite Indexes

Covered queries can provide excellent response time for specific queries when the leading columns are used.

With the composite nonclustered index on au_lname, au_fname, au_id, this query runs very quickly:

select au_id from authors where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to read only the upper levels of the index and a single page in the leaf-level row
in the nonclustered index of a 5000-row table.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 129

This similar-looking query (using the same index) does not perform quite as well. This query is still covered, but
searches on au_id:

select au_fname, au_lname from authors where au_id = "A1714224678"

Since this query does not include the leading column of the index, it has to scan the entire leaf level of the
index, about 95 reads.

Adding a column to the select list in the query above, which may seem like a minor change, makes the
performance even worse:

select au_fname, au_lname, phone from authors where au_id = "A1714224678"

This query performs a table scan, reading 222 pages. In this case, the performance is noticeably worse. For any
search argument that is not the leading column, SAP ASE has only two possible access methods: a table scan,
or a covered index scan.

It does not scan the leaf level of the index for a nonleading search argument and then access the data pages. A
composite index can be used only when it covers the query or when the first column appears in the where
clause.

For a query that includes the leading column of the composite index, adding a column that is not included in
the index adds only a single data page read. This query must read the data page to find the phone number:

select au_id, phone from authors where au_fname = "Eliot" and au_lname = "Wilk"

This table shows the performance characteristics of different where clauses with a nonclustered index on
au_lname, au_fname, au_id and no other indexes on the table.

Columns in the where Clause
Performance with the Indexed Columns
in the Select List

Performance with Other Columns
in the Select List

au_lname

or au_lname, au_fname

or au_lname, au_fname, au_id

Good; index used to descend tree; data
level is not accessed

Good; index used to descend tree;
data is accessed (one more page
read per row)

au_fname

or au_id

or au_fname, au_id

Moderate; index is scanned to return val
ues

Poor; index not used, table scan

Choose the ordering of the composite index so that most queries form a prefix subset.

130 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

8.5.11 Advantages and Disadvantages of Composite Indexes

Pros and cons of composite indexes and recommendations for it's use.

Composite indexes have these advantages:

● A composite index provides opportunities for index covering.
● If queries provide search arguments on each of the keys, the composite index requires fewer I/Os than the

same query using an index on any single attribute.
● A composite index is a good way to enforce the uniqueness of multiple attributes.

Good choices for composite indexes are:

● Lookup tables
● Columns that are frequently accessed together
● Columns used for vector aggregates
● Columns that make a frequently used subset from a table with very wide rows

The disadvantages of composite indexes are:

● Composite indexes tend to have large entries. This means fewer index entries per index page and more
index pages to read.

● An update to any attribute of a composite index causes the index to be modified. The columns you choose
should not be those that are updated often.

Poor choices are:

● Index rows that are nearly as wide as the data rows
● Composite indexes where only a minor key is used in the where clause

8.5.12 online reorg rebuild for Data-only-locked Indexes

You can run online reorg rebuild index on DOL indexes to recompact the data, collect garbage from
spaces left by previous deallocations, and rearrange the data to improve the index page clustering ratio.

Running online reorg rebuild index reduces the space an index requires, and improves the query
execution with higher clustering.

8.6 Techniques for Choosing Indexes

A study of two queries that must access a single table, and the indexing choices for these two queries.

The two queries are:

● A range query that returns a large number of rows
● A point query that returns only one or two rows

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 131

8.6.1 Index Choice for a Range Query

Reasons why you would choose a particular index for a range query.

Assume that you need to improve the performance of the following query:

select title from titles where price between $20.00 and $30.00

Some basic statistics on the table are:

● The table has 1,000,000 rows, and uses allpages locking.
● There are 10 rows per page; pages are 75 percent full, so the table has approximately 135,000 pages.
● 190,000 (19%) of the titles are priced between $20 and $30.

With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book and begin reading sequentially until it
gets to the last $30 book. With pages about 75 percent full, the average number of rows per page is 7.5. To read
190,000 matching rows, the query would read approximately 25,300 pages, plus 3 or 4 index pages.

With a nonclustered index on price and random distribution of price values, using the index to find the rows
for this query requires reading about 19 percent of the leaf level of the index; about 1,500 pages.

If the price values are randomly distributed, the number of data pages that must be read is likely to be high,
perhaps as many data pages as there are qualifying rows, 190,000. Since a table scan requires only 135,000
pages, you would not want to use a nonclustered index.

Another choice is a nonclustered index on price, title. The query can perform a matching index scan,
using the index to find the first page with a price of $20, and then scanning forward on the leaf level until it finds
a price of more than $30. This index requires about 35,700 leaf pages, so to scan the matching leaf pages
requires reading about 19 percent of the pages of this index, or about 6,800 reads.

For this query, the covering nonclustered index on price, title is best.

8.6.2 Add a Point Query with Different Indexing
Requirements

Strategy considerations for different indexing requirements.

The index choice for the range query on price produced a clear performance choice when all possibly useful
indexes were considered. Now, assume this query also needs to run against titles:

select price from titles where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query returns only one or two rows.

132 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

Considering both this query and the previous query, this table shows four possible indexing strategies and
estimate costs of using each index. The estimates for the numbers of index and data pages were generated
using a fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

Possible Index Choice Index Pages Range Query on rice Point Query on title

1 Nonclustered on title
Clustered on price

36,800 650 Clustered index, about 26,600
pages (135,000 *.19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

2 Clustered on title Non
clustered on price

3,770 6,076 Table scan, 135,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os

3 Nonclustered on title,
price

36,835 Nonmatching index scan, about
35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index, 5 I/Os

4 Nonclustered on price,
title

36,835 Matching index scan, about
6,800 pages (35,700 *.19)

With 16K I/O: 850 I/Os

Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Examining the figures in this table shows that:

● For the range query on price, choice 4 is best; choices 1 and 3 are acceptable with 16K I/O.
● For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for a combination of these two queries is to use two indexes:

● Choice 4, for range queries on price.
● Choice 2, for point queries on title, since the clustered index requires very little space.

You may need additional information to help you determine which indexing strategy to use to support multiple
queries. Typical considerations are:

● What is the frequency of each query? How many times per day or per hour is the query run?
● What are the response time requirements? Is one of them especially time critical?
● What are the response time requirements for updates? Does creating more than one index slow updates?
● Is the range of values typical? Is a wider or narrower range of prices, such as $20 to $50, often used? How

do different ranges affect index choice?
● Is there a large data cache? Are these queries critical enough to provide a 35,000-page cache for the

nonclustered composite indexes in index choice 3 or 4? Binding this index to its own cache would provide
very fast performance.

● What other queries and what other search arguments are used? Is this table frequently joined with other
tables?

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 133

8.7 Index and Statistics Maintenance

Maintenance considerations to ensure that indexes evolve with your system.

● Monitor queries to determine if indexes are still appropriate for your applications.
Periodically, check the query plans, as described in “Using showplan,” in Performance and Tuning Series:
Query Processing and Abstract Plans and the I/O statistics for your most frequent user queries. Pay special
attention to noncovering indexes that support range queries. They are most likely to switch to table scans if
the data distribution changes

● Drop and rebuild indexes that hurt performance.
● Keep index statistics up to date.
● Use space management properties to reduce page splits and to reduce the frequency of maintenance

operations.

8.7.1 Drop Indexes That Hurt Performance

Drop indexes that hurt performance. If an application performs data modifications during the day and
generates reports at night, you may want to drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever, actually used by the query optimizer.
Make sure that you base indexes on the current transactions and processes that are being run, not on the
original database design.

Check query plans to determine whether your indexes are being used.

See “Maintaining index and column statistics” and “Rebuilding indexes” in “Maintenance Activities and
Performance,” in Performance and Tuning Series: Physical Database Tuning.

8.7.2 Choose Space Management Properties for Indexes

Space management properties can help reduce the frequency of index maintenance. In particular, choosing the
fillfactor value can reduce the number of page splits on leaf pages of nonclustered indexes and on the data
pages of allpages-locked tables with clustered indexes.

See “Setting Space Management Properties,” in Performance and Tuning Series: Physical Database Tuning.

8.8 Additional Indexing Tips

Performance improvement suggestions for when you are creating and using indexes.

● Modify the logical design to make use of an artificial column and a lookup table for tables that require a
large index entry.

134 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

● Reduce the size of an index entry for a frequently used index.
● Drop indexes during periods when frequent updates occur, and rebuild them before periods when frequent

selects occur.
● If you perform frequent index maintenance, configure your server to speed up the sorting.

See “Configuring SAP ASE to speed sorting” in “Maintenance Activities and Performance,” in Performance
and Tuning Series: Physical Database Tuning for information about configuration parameters that enable
faster sorting.

8.8.1 Create Artificial Columns

When indexes, especially composite indexes, become too large, it may be beneficial to create an artificial
column that is assigned to a row, with a secondary lookup table that is used to translate between the internal ID
and the original columns.

This may increase response time for certain queries, but the overall performance gain due to a more compact
index and shorter data rows is usually worth the effort.

8.8.2 Keep Index Entries Short and Avoid Overhead

Avoid storing purely numeric IDs as character data.

Use integer or numeric IDs whenever possible to:

● Save storage space on the data pages
● Make index entries more compact
● Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on char columns. For short index
keys, especially those with little variation in length in the column data, use char for more compact index
entries.

8.8.3 Drop and Rebuild Indexes

You might drop nonclustered indexes prior to a major set of inserts, and then rebuild them afterwards. This
speeds the inserts and bulk copies, since the nonclustered indexes do not have to be updated with every insert.

See “Rebuilding indexes” in “Database Maintenance” in Performance and Tuning Series: Physical Database
Tuning.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 135

8.8.4 Configure Enough Sort Buffers

The sort buffers decide how many pages of data you can sort in each run. The number of pages is the basis for
the logarithmic function used to calculate the number of runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runs is calculated with “log (number of pages in table)
with 500 as the log base.”

Also, the number of sort buffers is shared by threads in the parallel sort; if you do not have enough sort buffers,
the parallel sort may not work as fast as it should.

8.8.5 Create the Clustered Index First

Do not create nonclustered indexes, then clustered indexes. When you create the clustered index, all previous
nonclustered indexes are rebuilt.

8.8.6 Configure Large Buffer Pools

To set up for larger I/Os, configure large buffers pools in a named cache and bind the cache to the table.

8.9 Asynchronous Log Service

Asynchronous log service, or ALS, enables great scalability in SAP ASE, providing higher throughput in logging
subsystems for high-end symmetric multiprocessor systems.

You cannot use ALS if you have fewer than four engines. If you try to enable ALS with fewer than four online
engines, an error message appears.

You can enable, disable, or configure ALS using sp_dboption:

sp_dboption <db Name>, "async log service", ["true" | "false"]

After issuing sp_dboption, you must issue a checkpoint in the database for which you are setting the ALS
option:

sp_dboption "mydb", "async log service", "true" use mydb

checkpoint

You can use the checkpoint to identify one or more databases, or use an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

136 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

Disabling ALS

Before you disable ALS, make sure there are no active users in the database. If there are, you receive an error
message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false" use mydb

checkpoint -------------
Error 3647: Cannot put database in single-user mode. Wait until all users have
logged out of the database and issue a CHECKPOINT to disable "async log service".

If there are no active users in the database, this example disables ALS:

sp_dboption "mydb", "async log service", "false" use mydb

checkpoint -------------

Displaying ALS

You can see whether ALS is enabled in a specified database using:

sp_helpdb "mydb" ----------
mydb 3.0 MB sa 2
 July 09, 2002 select into/bulkcopy/pllsort, trunc log on chkpt,

 async log service

8.9.1 Understanding the User Log Cache (ULC) Architecture

The SAP ASE logging architecture features the user log cache, or ULC, by which each task owns its own log
cache. No other task can write to this cache, and the task continues writing to the user log cache whenever a
transaction generates a log record.

Context

When the transaction commits or aborts, or the user log cache is full, the user log cache is flushed to the
common log cache, shared by all the current tasks, which is then written to the disk.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 137

Flushing the ULC is the first part of a commit or abort operation. It requires the following steps, each of which
can cause delay or increase contention:

Procedure

1. Obtain a lock on the last log page.
2. Allocate new log pages if necessary.
3. Copy the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last log page, which prevents any other
tasks from writing to the log cache or performing commit or abort operations.

4. Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to which the log is bound. Under a
large transaction load, contention on this spinlock can be significant.

8.9.2 When to Use ALS

You can enable ALS on any specified database that has at least one specific performance issue, so long as your
systems runs 4 or more online engines.

The specified database must have at least one of the following performance issues:

● Heavy contention on the last log page.
You can tell that the last log page is under contention when the sp_sysmon output in the Task
Management Report section shows a significantly high value. For example:

Task Management
Report Per Sec Per Xact Count % of Total

Log Semaphore Con
tention

58.0 0.3 34801 73.1

● Heavy contention on the cache manager spinlock for the log cache.
You can tell that the cache manager spinlock is under contention when the sp_sysmon output in the Data
Cache Management Report section for the database transaction log cache shows a high value in the
Spinlock Contention section. For example:

Cache c_log Per Sec Per Xact Count % of Total

Spinlock Contention n/a n/a n/a 40.0%

● Under utilized bandwidth in the log device.

138 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Indexing for Concurrency Control

 Note
Use ALS only when you identify a single database with high transaction requirements, since setting ALS for
multiple databases may cause unexpected variations in throughput and response times. If you want to
configure ALS on multiple databases, first check that your throughput and response times are satisfactory.

8.9.3 ALS Usage

Two threads—the ULC flusher and the log writer—scan the dirty buffers (buffers full of data not yet written to
the disk), copy the data, and write it to the log.

8.9.3.1 ULC Flusher

The ULC flusher is a system task thread that is dedicated to flushing the user log cache of a task into the
general log cache.

When a task is ready to commit, the user enters a commit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the ULC of the task that queued the request. The ULC flusher task
continuously monitors the flusher queue, removing requests from the queue and servicing them by flushing
ULC pages into the log cache.

8.9.3.2 Log Writer

The log writer patrols the dirty buffer chain in the log cache, issuing a write command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.

This occurs once the ULC flusher has finished flushing the ULC pages into the log cache. It then queues the
task request into a wakeup queue. Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

8.9.3.3 Stored Procedure Support for ALS

sp_dboption and sp_help support asynchronous log service.

● sp_dboption adds an option that enables and disables ALS.
● sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference Manual: Procedures.

Performance and Tuning Series: Locking and Concurrency Control
Indexing for Concurrency Control P U B L I C 139

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use genderspecific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

140 P U B L I C
Performance and Tuning Series: Locking and Concurrency Control

Important Disclaimers and Legal Information

Performance and Tuning Series: Locking and Concurrency Control
Important Disclaimers and Legal Information P U B L I C 141

www.sap.com/contactsap

© 2020 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Performance and Tuning Series: Locking and Concurrency Control
	Content
	1 Introduction to Locking
	1.1 How Locking Affects Performance
	1.2 Lock and Data Consistency
	1.3 Granularity of Locks and Locking Schemes
	1.3.1 Allpages Locking
	1.3.2 Datapages Locking
	1.3.3 Datarows Locking

	1.4 Types of Locks in SAP ASE
	1.4.1 Page and Row Locks
	1.4.2 Partition Locks
	1.4.2.1 Partition Lock Name
	1.4.2.2 Enabling Partition Locking

	1.4.3 Table Locks
	1.4.3.1 Commands that Take Intent Locks

	1.4.4 Schema Locks
	1.4.5 Demand Locks
	1.4.5.1 Demand Locking with Serial Execution
	1.4.5.2 Demand Locking with Parallel Execution

	1.4.6 Row-locked System Tables
	1.4.7 Range Locking for Serializable Reads
	1.4.8 Latches
	1.4.8.1 Metadata and Latch Management Enhancements

	1.5 Lock Compatibility and Lock Sufficiency
	1.6 How Isolation Levels Affect Locking
	1.6.1 Isolation Level 0, Read Uncommitted
	1.6.2 Isolation Level 1, Read Committed
	1.6.3 Isolation Level 2, Repeatable Read
	1.6.4 Isolation Level 3, Serializable Reads
	1.6.5 SAP ASE Default Isolation Level

	1.7 Lock Types and Duration During Query Processing
	1.7.1 Lock Types During Create Index Commands
	1.7.2 Locking for Select Queries at Isolation Level 1
	1.7.3 Table Scans and Isolation Levels 2 and 3
	1.7.3.1 Table Scans and Table Locks at Isolation Level 3
	1.7.3.2 Isolation Level 2 and Allpages-locked Tables

	1.7.4 When Update Locks Are Not Required
	1.7.5 Locking During or Processing
	1.7.5.1 Processing or Queries for Allpages-locked Tables
	1.7.5.2 Processing or Queries for Data-only-locked Tables
	1.7.5.2.1 Processing or Queries at Isolation Levels 1 and 2
	1.7.5.2.2 Processing or Queries at Isolation Level 3

	1.7.6 Skip Uncommitted inserts During selects
	1.7.6.1 Skip Uncommitted inserts During deletes, updates, and inserts
	1.7.6.2 Locking during DMLs on Tables with Referential Integrity Constraints

	1.7.7 Using Alternative Predicates to Skip Nonqualifying Rows

	1.8 Pseudocolumn-level Locking
	1.8.1 Select Queries That Do Not Reference the Updated Column
	1.8.2 Qualify Old and New Values for Uncommitted Updates

	2 Snapshot Isolation Level and Locking
	3 Locking Configuration and Tuning
	3.1 Locks and Performance
	3.1.1 sp_sysmon and sp_object_stats Usage
	3.1.2 Reduce Lock Contention
	3.1.2.1 Reducing Contention Between Updates and Selects
	3.1.2.2 Lock Management Enhancements
	3.1.2.3 Add Indexes to Reduce Contention
	3.1.2.4 Retain Short Transactions
	3.1.2.5 Avoid Hot Spots
	3.1.2.6 Transactional Memory

	3.1.3 Additional Locking Guidelines
	3.1.4 Improved Concurrency for Partition-Level Online Operations

	3.2 Lock Configuration and Promotion Thresholds
	3.2.1 Lock Promotion
	3.2.2 Configuring the SAP ASE Lock Limit
	3.2.2.1 Estimate Number of Locks for Data-only-locked Tables
	3.2.2.1.1 insert Commands and Locks
	3.2.2.1.2 select Queries and Locks
	3.2.2.1.3 Data Modification Commands and Locks

	3.2.2.2 Limiting User Locks Per Session

	3.2.3 Set Lock Promotion Thresholds
	3.2.3.1 Lock Promotion and Scan Sessions
	3.2.3.2 Lock Promotion High Water Mark
	3.2.3.3 Lock Promotion Low Water Mark
	3.2.3.4 Lock Promotion Percent
	3.2.3.5 Set Server-wide Lock Promotion Thresholds
	3.2.3.6 Set the Lock Promotion Threshold for a Table or Database
	3.2.3.7 Precedence of Settings
	3.2.3.8 Dropping Database and Table Settings
	3.2.3.9 sp_sysmon Usage While Tuning Lock Promotion Thresholds

	3.3 Choosing the Locking Scheme for a Table
	3.3.1 Analyzing Existing Applications
	3.3.2 Choosing a Locking Scheme Based on Contention Statistics
	3.3.3 Monitoring and Managing Tables After Conversion
	3.3.4 Applications Not Likely to Benefit from Data-only Locking
	3.3.4.1 Tables where Clustered Index Performance Must Remain High
	3.3.4.2 Tables with Maximum-length Rows

	3.4 Optimistic Index Locking
	3.4.1 Using Optimistic Index Locking
	3.4.2 Cautions and Issues

	4 Lock Tools
	4.1 Information About Blocked Processes
	4.2 View Locks with sp_lock
	4.3 View Locks with sp_familylock
	4.4 Intrafamily Blocking During Network Buffer Merges
	4.5 Monitor Lock Timeouts

	5 Deadlocks and Concurrency
	5.1 Server-side Versus Application-side Deadlocks
	5.1.1 Application Deadlock Example

	5.2 Server Task Deadlocks
	5.3 Deadlocks and Parallel Queries
	5.4 Print Deadlock Information to the Error Log
	5.5 Deadlock Avoidance
	5.5.1 Lock Acquisition on Objects in the Same Order
	5.5.2 Delay Deadlock Checking

	5.6 Identify Tables Where Concurrency is a Problem
	5.7 Lock Management Reporting

	6 Lock Commands
	6.1 Specify the Locking Scheme for a Table
	6.1.1 Specify a Server-Wide Locking Scheme
	6.1.2 Specify a Locking Scheme with Create Table
	6.1.3 Changing a Locking Scheme with alter table
	6.1.4 Before and After Changing Locking Schemes
	6.1.5 Expense of Switching To or From Allpages Locking
	6.1.6 Sort Performance During alter table
	6.1.7 Specify a Locking Scheme with select into

	6.2 Control Isolation Levels
	6.2.1 Set Isolation Levels for a Session
	6.2.2 Syntax for Query-level and Table-level Locking Options
	6.2.3 holdlock, noholdlock, or shared Usage
	6.2.4 at isolation Clause Usage
	6.2.5 Making Locks More Restrictive
	6.2.6 Making Locks Less Restrictive

	6.3 Readpast Locking
	6.4 Cursors and Locking
	6.4.1 shared Keyword Usage

	6.5 lock table
	6.6 Lock Timeouts
	6.7 Preventing Blocking Row Counts

	7 Indexes
	7.1 Types of Indexes
	7.1.1 Index Pages
	7.1.1.1 Root Level
	7.1.1.2 Leaf Level
	7.1.1.3 Intermediate Level

	7.1.2 Index Size
	7.1.3 Using Latch-Free Indexes
	7.1.4 Hash-Cache BTree Indexes
	7.1.4.1 Tuning the Hash-Cached B-tree Indexes
	7.1.4.2 Determining if Auto Tuning Thresholds Are Adequate

	7.2 Indexes and Partitions
	7.2.1 Local Indexes on Partitioned Tables
	7.2.2 Global Indexes on Partitioned Tables
	7.2.3 Local versus Global Indexes
	7.2.4 Unsupported Partition Index Types

	7.3 Creating Partial Indexes
	7.4 Clustered Indexes on Allpages-locked Tables
	7.4.1 Clustered Indexes and select Operations
	7.4.1.1 Relationship Between Physical and Logical Reads

	7.4.2 Clustered Indexes and insert Operations
	7.4.3 Page Splitting on Full Data Pages
	7.4.3.1 Exceptions to Page Splitting

	7.4.4 Page Splitting on Index Pages
	7.4.5 Performance Impacts of Page Splitting
	7.4.6 Overflow Pages
	7.4.7 Clustered Indexes and delete Operations
	7.4.7.1 Deleting the Last Row on a Page
	7.4.7.2 Index Page Merges

	7.5 Nonclustered Indexes
	7.5.1 Leaf Pages Revisited
	7.5.2 Nonclustered Index Structure
	7.5.3 Nonclustered Indexes and select Operations
	7.5.4 Nonclustered Indexes and insert Operations
	7.5.5 Nonclustered Indexes and delete Operations
	7.5.6 Clustered Indexes on Data-only-locked Tables

	7.6 Index Covering
	7.6.1 Covering Matching Index Scans
	7.6.2 Covering Nonmatching Index Scans

	7.7 Indexes and Caching
	7.7.1 Using Separate Caches for Data and Index Pages
	7.7.2 Index Trips Through the Cache

	8 Indexing for Concurrency Control
	8.1 Indexes and Performance
	8.2 Detecting Indexing Problems
	8.2.1 Symptoms of Poor Indexing
	8.2.1.1 Lack of Indexes is Causing Table Scans
	8.2.1.2 Index is Not Selective Enough
	8.2.1.3 Index Does Not Support Range Queries
	8.2.1.4 Too Many Indexes Slow Data Modification
	8.2.1.5 Index Entries are Too Large
	8.2.1.6 Exception for Wide Data Rows and Wide Index Rows

	8.3 Fixing Corrupted Indexes
	8.3.1 Repairing a Nonclustered Index on sysobjects

	8.4 Index Limits and Requirements
	8.5 Index Choices
	8.5.1 Index Keys and Logical Keys
	8.5.2 Guidelines for Clustered Indexes
	8.5.3 Clustered Index Selection
	8.5.4 Candidates for Nonclustered Indexes
	8.5.5 Function-based Indexes Selection
	8.5.6 Index Selection
	8.5.6.1 Examples of Using Index Selection

	8.5.7 Other Indexing Guidelines
	8.5.8 Nonclustered Indexes Selection
	8.5.8.1 Performance Price for Data Modification

	8.5.9 Composite Indexes Selection
	8.5.10 Key Order and Performance in Composite Indexes
	8.5.11 Advantages and Disadvantages of Composite Indexes
	8.5.12 online reorg rebuild for Data-only-locked Indexes

	8.6 Techniques for Choosing Indexes
	8.6.1 Index Choice for a Range Query
	8.6.2 Add a Point Query with Different Indexing Requirements

	8.7 Index and Statistics Maintenance
	8.7.1 Drop Indexes That Hurt Performance
	8.7.2 Choose Space Management Properties for Indexes

	8.8 Additional Indexing Tips
	8.8.1 Create Artificial Columns
	8.8.2 Keep Index Entries Short and Avoid Overhead
	8.8.3 Drop and Rebuild Indexes
	8.8.4 Configure Enough Sort Buffers
	8.8.5 Create the Clustered Index First
	8.8.6 Configure Large Buffer Pools

	8.9 Asynchronous Log Service
	8.9.1 Understanding the User Log Cache (ULC) Architecture
	8.9.2 When to Use ALS
	8.9.3 ALS Usage
	8.9.3.1 ULC Flusher
	8.9.3.2 Log Writer
	8.9.3.3 Stored Procedure Support for ALS

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

